BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 1245472)

  • 1. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles.
    Lumeng L; Bremer J; Davis EJ
    J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the active transfer of reducing equivalents into mitochondria via the malate-aspartate shuttle.
    Bremer J; Davis EJ
    Biochim Biophys Acta; 1975 Mar; 376(3):387-97. PubMed ID: 164904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes.
    Berry MN; Phillips JW; Gregory RB; Grivell AR; Wallace PG
    Biochim Biophys Acta; 1992 Sep; 1136(3):223-30. PubMed ID: 1520699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo and in vitro adenosine stimulation of ethanol oxidation by hepatocytes, and the role of the malate-aspartate shuttle.
    Hernández-Muñoz R; Díaz-Muñoz M; Chagoya de Sánchez V
    Biochim Biophys Acta; 1987 Sep; 930(2):254-63. PubMed ID: 2887212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid oxidation of NADPH via the reconstituted malate-aspartate shuttle in systems containing mitochondrial and soluble fractions of rat liver: implications for ethanol metabolism.
    Dawson AG
    Biochem Pharmacol; 1982 Sep; 31(17):2733-8. PubMed ID: 7138569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    J Mol Cell Cardiol; 1998 Aug; 30(8):1571-9. PubMed ID: 9737943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatic mitochondrial respiration and transport of reducing equivalents in rats fed an energy dense diet.
    Iossa S; Mollica MP; Lionetti L; Barletta A; Liverini G
    Int J Obes Relat Metab Disord; 1995 Aug; 19(8):539-43. PubMed ID: 7489023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic adaptation of the hypertrophied heart: role of the malate/aspartate and alpha-glycerophosphate shuttles.
    Rupert BE; Segar JL; Schutte BC; Scholz TD
    J Mol Cell Cardiol; 2000 Dec; 32(12):2287-97. PubMed ID: 11113004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of hepatic gluconeogenesis in the guinea pig by fatty acids and ammonia.
    Jomain-Baum M; Hanson RW
    J Biol Chem; 1975 Dec; 250(23):8978-85. PubMed ID: 1194271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute and chronic ethanol treatment in vivo increases malate-aspartate shuttle capacity in perfused rat liver.
    Sugano T; Handler JA; Yoshihara H; Kizaki Z; Thurman RG
    J Biol Chem; 1990 Dec; 265(35):21549-53. PubMed ID: 2254313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the malate-aspartate shuttle on oxidative metabolism in synaptosomes.
    Cheeseman AJ; Clark JB
    J Neurochem; 1988 May; 50(5):1559-65. PubMed ID: 3361310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acid oxidation, substrate shuttles, and activity of the citric acid cycle in hepatocellular carcinomas of varying differentiation.
    Cederbaum AI; Rubin E
    Cancer Res; 1976 Sep; 36(9 pt.1):2980-7. PubMed ID: 184936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate-dependent utilization of the glycerol 3-phosphate or malate/aspartate redox shuttles by Ehrlich ascites cells.
    Grivell AR; Korpelainen EI; Williams CJ; Berry MN
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):665-71. PubMed ID: 7654209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools.
    McKenna MC; Waagepetersen HS; Schousboe A; Sonnewald U
    Biochem Pharmacol; 2006 Feb; 71(4):399-407. PubMed ID: 16368075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems.
    Abbrescia DI; La Piana G; Lofrumento NE
    Arch Biochem Biophys; 2012 Feb; 518(2):157-63. PubMed ID: 22239987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing equivalent shuttles in developing porcine myocardium: enhanced capacity in the newborn heart.
    Scholz TD; Koppenhafer SL
    Pediatr Res; 1995 Aug; 38(2):221-7. PubMed ID: 7478820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of acute hyperammonemia in vivo on oxidative metabolism in nonsynaptic rat brain mitochondria.
    Kosenko E; Felipo V; Montoliu C; Grisolía S; Kaminsky Y
    Metab Brain Dis; 1997 Mar; 12(1):69-82. PubMed ID: 9101539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution to control of mitochondrial oxidative phosphorylation by supplement of reducing equivalents.
    Kunz W; Gellerich FN; Schild L
    Biochem Med Metab Biol; 1994 Jun; 52(1):65-75. PubMed ID: 7917469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of thyroidectomy upon the activity of three mitochondrial shuttles in rats.
    Tobin RB; Berdanier CD; Ecklund RE
    J Environ Pathol Toxicol; 1979 Dec; 3(1-2):307-14. PubMed ID: 547016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of clofibrate treatment on acylcarnitine oxidation in isolated rat liver mitochondria.
    Kähönen M
    Med Biol; 1979 Feb; 57(1):58-65. PubMed ID: 35720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.