These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 1245472)
1. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles. Lumeng L; Bremer J; Davis EJ J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472 [TBL] [Abstract][Full Text] [Related]
2. Studies on the active transfer of reducing equivalents into mitochondria via the malate-aspartate shuttle. Bremer J; Davis EJ Biochim Biophys Acta; 1975 Mar; 376(3):387-97. PubMed ID: 164904 [TBL] [Abstract][Full Text] [Related]
3. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes. Berry MN; Phillips JW; Gregory RB; Grivell AR; Wallace PG Biochim Biophys Acta; 1992 Sep; 1136(3):223-30. PubMed ID: 1520699 [TBL] [Abstract][Full Text] [Related]
4. In vivo and in vitro adenosine stimulation of ethanol oxidation by hepatocytes, and the role of the malate-aspartate shuttle. Hernández-Muñoz R; Díaz-Muñoz M; Chagoya de Sánchez V Biochim Biophys Acta; 1987 Sep; 930(2):254-63. PubMed ID: 2887212 [TBL] [Abstract][Full Text] [Related]
5. Rapid oxidation of NADPH via the reconstituted malate-aspartate shuttle in systems containing mitochondrial and soluble fractions of rat liver: implications for ethanol metabolism. Dawson AG Biochem Pharmacol; 1982 Sep; 31(17):2733-8. PubMed ID: 7138569 [TBL] [Abstract][Full Text] [Related]
7. Hepatic mitochondrial respiration and transport of reducing equivalents in rats fed an energy dense diet. Iossa S; Mollica MP; Lionetti L; Barletta A; Liverini G Int J Obes Relat Metab Disord; 1995 Aug; 19(8):539-43. PubMed ID: 7489023 [TBL] [Abstract][Full Text] [Related]
8. Metabolic adaptation of the hypertrophied heart: role of the malate/aspartate and alpha-glycerophosphate shuttles. Rupert BE; Segar JL; Schutte BC; Scholz TD J Mol Cell Cardiol; 2000 Dec; 32(12):2287-97. PubMed ID: 11113004 [TBL] [Abstract][Full Text] [Related]
9. Regulation of hepatic gluconeogenesis in the guinea pig by fatty acids and ammonia. Jomain-Baum M; Hanson RW J Biol Chem; 1975 Dec; 250(23):8978-85. PubMed ID: 1194271 [TBL] [Abstract][Full Text] [Related]
10. Acute and chronic ethanol treatment in vivo increases malate-aspartate shuttle capacity in perfused rat liver. Sugano T; Handler JA; Yoshihara H; Kizaki Z; Thurman RG J Biol Chem; 1990 Dec; 265(35):21549-53. PubMed ID: 2254313 [TBL] [Abstract][Full Text] [Related]
11. Influence of the malate-aspartate shuttle on oxidative metabolism in synaptosomes. Cheeseman AJ; Clark JB J Neurochem; 1988 May; 50(5):1559-65. PubMed ID: 3361310 [TBL] [Abstract][Full Text] [Related]
12. Fatty acid oxidation, substrate shuttles, and activity of the citric acid cycle in hepatocellular carcinomas of varying differentiation. Cederbaum AI; Rubin E Cancer Res; 1976 Sep; 36(9 pt.1):2980-7. PubMed ID: 184936 [TBL] [Abstract][Full Text] [Related]
13. Substrate-dependent utilization of the glycerol 3-phosphate or malate/aspartate redox shuttles by Ehrlich ascites cells. Grivell AR; Korpelainen EI; Williams CJ; Berry MN Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):665-71. PubMed ID: 7654209 [TBL] [Abstract][Full Text] [Related]
14. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. McKenna MC; Waagepetersen HS; Schousboe A; Sonnewald U Biochem Pharmacol; 2006 Feb; 71(4):399-407. PubMed ID: 16368075 [TBL] [Abstract][Full Text] [Related]
15. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems. Abbrescia DI; La Piana G; Lofrumento NE Arch Biochem Biophys; 2012 Feb; 518(2):157-63. PubMed ID: 22239987 [TBL] [Abstract][Full Text] [Related]
16. Reducing equivalent shuttles in developing porcine myocardium: enhanced capacity in the newborn heart. Scholz TD; Koppenhafer SL Pediatr Res; 1995 Aug; 38(2):221-7. PubMed ID: 7478820 [TBL] [Abstract][Full Text] [Related]
17. Effects of acute hyperammonemia in vivo on oxidative metabolism in nonsynaptic rat brain mitochondria. Kosenko E; Felipo V; Montoliu C; Grisolía S; Kaminsky Y Metab Brain Dis; 1997 Mar; 12(1):69-82. PubMed ID: 9101539 [TBL] [Abstract][Full Text] [Related]
18. Contribution to control of mitochondrial oxidative phosphorylation by supplement of reducing equivalents. Kunz W; Gellerich FN; Schild L Biochem Med Metab Biol; 1994 Jun; 52(1):65-75. PubMed ID: 7917469 [TBL] [Abstract][Full Text] [Related]
19. Effect of thyroidectomy upon the activity of three mitochondrial shuttles in rats. Tobin RB; Berdanier CD; Ecklund RE J Environ Pathol Toxicol; 1979 Dec; 3(1-2):307-14. PubMed ID: 547016 [TBL] [Abstract][Full Text] [Related]
20. Effect of clofibrate treatment on acylcarnitine oxidation in isolated rat liver mitochondria. Kähönen M Med Biol; 1979 Feb; 57(1):58-65. PubMed ID: 35720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]