BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 12454894)

  • 1. Remotely-controlled approach for stereotactic neurobiopsy.
    Liu H; Hall WA; Truwit CL
    Comput Aided Surg; 2002; 7(4):237-47. PubMed ID: 12454894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronavigation in interventional MR imaging. Prospective stereotaxy.
    Liu H; Hall WA; Truwit CL
    Neuroimaging Clin N Am; 2001 Nov; 11(4):695-704. PubMed ID: 11995424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy and clinical use of a novel aiming device for frameless stereotactic brain biopsy.
    Widmann G; Eisner W; Kovacs P; Fiegele T; Ortler M; Lang TB; Stoffner R; Bale R
    Minim Invasive Neurosurg; 2008 Dec; 51(6):361-9. PubMed ID: 19061150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data.
    Rasmussen IA; Lindseth F; Rygh OM; Berntsen EM; Selbekk T; Xu J; Nagelhus Hernes TA; Harg E; Håberg A; Unsgaard G
    Acta Neurochir (Wien); 2007; 149(4):365-78. PubMed ID: 17308976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A virtual environment for surgical image guidance in intraoperative MRI.
    Samset E; Talsma A; Kintel M; Elle OJ; Aurdal L; Hirschberg H; Fosse E
    Comput Aided Surg; 2002; 7(4):187-96. PubMed ID: 12454891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensor-based neuronavigation: evaluation of a large continuous patient population.
    Kuehn B; Mularski S; Schoenherr S; Hammersen S; Stendel R; Kombos T; Suess S; Suess O
    Clin Neurol Neurosurg; 2008 Dec; 110(10):1012-9. PubMed ID: 18722707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application accuracy of a skull-mounted trajectory guide system for image-guided functional neurosurgery.
    Henderson JM; Holloway KL; Gaede SE; Rosenow JM
    Comput Aided Surg; 2004; 9(4):155-60. PubMed ID: 16192055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image-guided stereotaxy in the interventional MRI.
    Samset E; Hirschberg H
    Minim Invasive Neurosurg; 2003 Feb; 46(1):5-10. PubMed ID: 12640576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI-guided robotic system for transperineal prostate interventions: proof of principle.
    van den Bosch MR; Moman MR; van Vulpen M; Battermann JJ; Duiveman E; van Schelven LJ; de Leeuw H; Lagendijk JJ; Moerland MA
    Phys Med Biol; 2010 Mar; 55(5):N133-40. PubMed ID: 20145293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronavigation in intraoperative MRI.
    Samset E; Hirschberg H
    Comput Aided Surg; 1999; 4(4):200-7. PubMed ID: 10567098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Future perspectives for intraoperative MRI.
    Jolesz FA
    Neurosurg Clin N Am; 2005 Jan; 16(1):201-13. PubMed ID: 15561539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoscopic navigation-controlled display of preoperative MRI and intraoperative 3D ultrasound in planning and guidance of neurosurgery: new technology for minimally invasive image-guided surgery approaches.
    Hernes TA; Ommedal S; Lie T; Lindseth F; Langø T; Unsgaard G
    Minim Invasive Neurosurg; 2003 Jun; 46(3):129-37. PubMed ID: 12872188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. System for robotically assisted percutaneous procedures with computed tomography guidance.
    Masamune K; Fichtinger G; Patriciu A; Susil RC; Taylor RH; Kavoussi LR; Anderson JH; Sakuma I; Dohi T; Stoianovici D
    Comput Aided Surg; 2001; 6(6):370-83. PubMed ID: 11954068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile intraoperative MRI in neurosurgery and radiology.
    Yrjänä SK; Katisko JP; Ojala RO; Tervonen O; Schiffbauer H; Koivukangas J
    Acta Neurochir (Wien); 2002 Mar; 144(3):271-8; discussion 278. PubMed ID: 11956940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volume registration using needle paths and point landmarks for evaluation of interventional MRI treatments.
    Lazebnik RS; Lancaster TL; Breen MS; Lewin JS; Wilson DL
    IEEE Trans Med Imaging; 2003 May; 22(5):653-60. PubMed ID: 12846434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous ultrasound and MRI system for breast biopsy: compatibility assessment and demonstration in a dual modality phantom.
    Tang AM; Kacher DF; Lam EY; Wong KK; Jolesz FA; Yang ES
    IEEE Trans Med Imaging; 2008 Feb; 27(2):247-54. PubMed ID: 18334446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1.5 T: spectroscopy-supported brain biopsy.
    Hall WA; Truwit CL
    Neurosurg Clin N Am; 2005 Jan; 16(1):165-72, vii. PubMed ID: 15561536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimally invasive precision brain access using prospective stereotaxy and a trajectory guide.
    Martin AJ; Hall WA; Roark C; Starr PA; Larson PS; Truwit CL
    J Magn Reson Imaging; 2008 Apr; 27(4):737-43. PubMed ID: 18383266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Laparoscopic and general surgery guided by open interventional magnetic resonance].
    Lauro A; Gould SW; Cirocchi R; Giustozzi G; Darzi A
    Minerva Chir; 2004 Oct; 59(5):507-16. PubMed ID: 15494679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An approach for preoperative planning and performance of MR-guided interventions demonstrated with a manual manipulator in a 1.5T MRI scanner.
    Seimenis I; Tsekos NV; Keroglou C; Eracleous E; Pitris C; Christoforou EG
    Cardiovasc Intervent Radiol; 2012 Apr; 35(2):359-67. PubMed ID: 21479747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.