These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1245544)

  • 1. Role of creatine in the regulation of cardiac protein synthesis.
    Ingwall JS; Wildenthal K
    J Cell Biol; 1976 Jan; 68(1):159-63. PubMed ID: 1245544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creatine and the control of muscle-specific protein synthesis in cardiac and skeletal muscle.
    Ingwall JS
    Circ Res; 1976 May; 38(5 Suppl 1):I115-23. PubMed ID: 1269086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creatine: a possible stimulus skeletal cardiac muscle hypertrophy.
    Ingwall JS; Morales MF; Stockdale FE; Wildenthal K
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():467-81. PubMed ID: 129840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity of creatine in the control of muscle protein synthesis.
    Ingwall JS; Weiner CD; Morales MF; Davis E; Stockdale FE
    J Cell Biol; 1974 Jul; 62(1):145-51. PubMed ID: 4407046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creatine and the control of myosin synthesis in differentiating skeletal muscle.
    Ingwall JS; Morales MF; Stockdale FE
    Proc Natl Acad Sci U S A; 1972 Aug; 69(8):2250-3. PubMed ID: 4506094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A reexamination of the effects of creatine on muscle protein synthesis in tissue culture.
    Fry DM; Morales MF
    J Cell Biol; 1980 Feb; 84(2):294-7. PubMed ID: 7380884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of work-induced hypertrophy of skeletal muscle.
    Goldberg AL; Etlinger JD; Goldspink DF; Jablecki C
    Med Sci Sports; 1975; 7(3):185-98. PubMed ID: 128681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of acute anaesthesia on synthesis of contractile and non-contractile proteins of heart muscle and mixed proteins of types I and II fibre rich skeletal muscles of rat.
    Siddiq T; Richardson PJ; Hashim IA; Preedy VR
    Cardiovasc Res; 1991 Apr; 25(4):314-8. PubMed ID: 1884390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of creatine on contents of myosin heavy chain and myosin-heavy-chain mRNA in steady-state chicken muscle-cell cultures.
    Young RB; Denome RM
    Biochem J; 1984 Mar; 218(3):871-6. PubMed ID: 6721838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake and phosphorylation of (14C) creatine by mouse cardiac muscle in vivo.
    Berlet HH
    Recent Adv Stud Cardiac Struct Metab; 1975; 7():183-92. PubMed ID: 1226433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of contractile proteins in heart and skeletal muscle.
    Stull JT; Manning DR; High CW; Blumenthal DK
    Fed Proc; 1980 Apr; 39(5):1552-7. PubMed ID: 7364051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term alcohol administration inhibits synthesis of both myofibrillar and sarcoplasmic proteins in heart.
    Vary TC; Deiter G
    Metabolism; 2005 Feb; 54(2):212-9. PubMed ID: 15690316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles.
    Swynghedauw B
    Physiol Rev; 1986 Jul; 66(3):710-71. PubMed ID: 2942954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
    Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H
    J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leucine induces myofibrillar protein accretion in cultured skeletal muscle through mTOR dependent and -independent control of myosin heavy chain mRNA levels.
    Haegens A; Schols AM; van Essen AL; van Loon LJ; Langen RC
    Mol Nutr Food Res; 2012 May; 56(5):741-52. PubMed ID: 22648621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of creatine supplementation on cardiac muscle of exercise-stressed rats.
    McClung JM; Hand GA; Davis JM; Carson JA
    Eur J Appl Physiol; 2003 Mar; 89(1):26-33. PubMed ID: 12627302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Relationship between the strength of myocardial fiber contraction of frog heart ventricle and processes of intracellular energy transport].
    Rozenshtraukh LV; Saks VA; Undrovinas AI; Iushmanova AV; Smirnov VN
    Fiziol Zh SSSR Im I M Sechenova; 1976 Aug; 62(8):1199-1209. PubMed ID: 1086803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship of intracellular creatine concentration and uptake to muscle mass in vivo.
    Hofmann WW; Butte J; Leon HA
    Am J Physiol; 1978 Nov; 235(5):C199-203. PubMed ID: 727242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myofibrillar protein turnover. Synthesis of protein-bound 3-methylhistidine, actin, myosin heavy chain and aldolase in rat skeletal muscle in the fed and starved states.
    Bates PC; Grimble GK; Sparrow MP; Millward DJ
    Biochem J; 1983 Aug; 214(2):593-605. PubMed ID: 6615482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.