These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 1245558)

  • 1. Passive cation movements in the Ehrlich ascites tumor cell: the effects of 2,4,6-trinitrobenzene sulfonic acid.
    Smith TC; Adams R
    J Cell Physiol; 1976 Jan; 87(1):53-62. PubMed ID: 1245558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of lanthanum on electrophoretic mobility and passive cation movements of the Ehrlich ascites tumor cell.
    Smith TC
    J Cell Physiol; 1976 Jan; 87(1):47-52. PubMed ID: 1245557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heart sarcolemmal (Na+ + K+)-ATPase has an essential amino group in the potassium binding site on the enzyme molecule.
    Breier A; Monosíková R; Ziegelhöffer A; Dzurba A
    Gen Physiol Biophys; 1986 Oct; 5(5):537-44. PubMed ID: 3026888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of K+ and Na+ transport and intracellular contents during and after heat shock and their role in protein synthesis in rat hepatoma cells.
    Boonstra J; Schamhart DH; de Laat SW; van Wijk R
    Cancer Res; 1984 Mar; 44(3):955-60. PubMed ID: 6318989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of magnesium-dependent cell membrane alterations on the transport of K+ in Ehrlich ascites tumour cells.
    Schilling K; Börnig H; Cumme G; Hoppe H
    Acta Biol Med Ger; 1980; 39(2-3):177-84. PubMed ID: 6252741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Energy characteristics of the transport of monovalent cations in ascites tumor cells].
    Kaz'min SD; Danko IM
    Biokhimiia; 1986 Jan; 51(1):95-102. PubMed ID: 3006802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic alterations of the divalent cation-dependent ATPase activities of human erythrocyte membranes induced by blocking the membrane amino groups.
    Scutari G; Ballestrin G; Branca D; Boninsegna A
    Boll Soc Ital Biol Sper; 1983 Oct; 59(10):1391-7. PubMed ID: 6140929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of fluoride and vanadate on K+ transport across the erythrocyte membrane of Rana temporaria.
    Agalakova NI; Lapin AV; Gusev GP
    Membr Cell Biol; 2000; 13(4):527-36. PubMed ID: 10926370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy supply of the mitotic cell cycle and the Na+/H+-antiport in ascites tumors.
    Kazmin SD; Danko IM
    Neoplasma; 1989; 36(2):139-47. PubMed ID: 2541348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of ouabain binding and changes in cellular sodium content, 42K+ transport and contractile state during ouabain exposure in cultured chick heart cells.
    Kim D; Barry WH; Smith TW
    J Pharmacol Exp Ther; 1984 Nov; 231(2):326-33. PubMed ID: 6092615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical modification of sodium channel surface charges in frog skeletal muscle by trinitrobenzene sulphonic acid.
    Cahalan MD; Pappone PA
    J Physiol; 1981 Dec; 321():127-39. PubMed ID: 6279821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cyclosporine A on Na+/K(+)-ATPase, Na+/K+/2Cl- cotransporter, and H+/K(+)-ATPase in MDCK cells and two subtypes, C7 and C11.
    Deppe CE; Heering PJ; Tinel H; Kinne-Saffran E; Grabensee B; Kinne RK
    Exp Nephrol; 1997; 5(6):471-80. PubMed ID: 9438176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Labeling of the cell surface of neuroblastoma C-1300 by means of trinitrobenzenesulfonate (TNBS): differences between cells in suspension and in monolayers].
    Di Renzo MF; Marchisio PC
    Boll Soc Ital Biol Sper; 1977 Oct; 53(20):1783-6. PubMed ID: 603695
    [No Abstract]   [Full Text] [Related]  

  • 14. [Differential interaction of 2,4,6-trinitrobenzenesulfonic (TNBS) and 2,4-dinitrobenzenesulfonic (DNBS) acids on mouse lymphocytes].
    Vaillier D; Vaillier J; Donner M
    C R Seances Acad Sci D; 1979 Jul; 289(2):185-7. PubMed ID: 117922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of amino and sulfhydryl sites in the sodium pathway in dog red blood cell membranes.
    Castranova V; Miles PR
    J Membr Biol; 1977 May; 33(3-4):263-79. PubMed ID: 864691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of imidoesters, fluorodinitrobenzene and trinitrobenzenesulfonate on ion transport in human erythrocytes.
    Shaw A; Marinetti GV
    Chem Phys Lipids; 1980 Dec; 27(4):329-35. PubMed ID: 7448958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma membrane aminophospholipid distribution in transformed murine fibroblasts.
    Fontaine RN; Schroeder F
    Biochim Biophys Acta; 1979 Nov; 558(1):1-12. PubMed ID: 497195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium and sodium movements in the Ehrlich mouse ascites tumor cell.
    HEMPLING HG
    J Gen Physiol; 1958 Jan; 41(3):565-83. PubMed ID: 13491822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-exchange of sodium in human lymphocytes.
    Negendank W; Shaller C
    Biophys J; 1984 Sep; 46(3):331-42. PubMed ID: 6487733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of the (Na+ + K+)-dependent ATPase by acetic anhydride and trinitrobenzene sulfonate: specific changes in enzymatic properties.
    Robinson JD; Flashner MS
    Arch Biochem Biophys; 1979 Sep; 196(2):350-62. PubMed ID: 225994
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.