BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 12455707)

  • 1. Effects of the loss of triose phosphate isomerase activity on carbon metabolism in Kluyveromyces lactis.
    Capitanio D; Merico A; Ranzi BM; Compagno C
    Res Microbiol; 2002 Nov; 153(9):593-8. PubMed ID: 12455707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations of the glucose metabolism in a triose phosphate isomerase-negative Saccharomyces cerevisiae mutant.
    Compagno C; Brambilla L; Capitanio D; Boschi F; Ranzi BM; Porro D
    Yeast; 2001 May; 18(7):663-70. PubMed ID: 11329176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation, nucleotide sequence, and physiological relevance of the gene encoding triose phosphate isomerase from Kluyveromyces lactis.
    Compagno C; Boschi F; Daleffe A; Porro D; Ranzi BM
    Appl Environ Microbiol; 1999 Sep; 65(9):4216-9. PubMed ID: 10473437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of the CgTPI gene encoding triose phosphate isomerase of Candida glycerinogenes inhibits the biosynthesis of glycerol.
    Yongguang Z; Wei S; Zhiming R; Huiying F; Jian Z
    Curr Microbiol; 2007 Aug; 55(2):147-51. PubMed ID: 17619100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of pyruvate metabolism in chemostat cultures of Kluyveromyces lactis CBS 2359.
    Zeeman AM; Kuyper M; Pronk JT; van Dijken JP; Steensma HY
    Yeast; 2000 May; 16(7):611-20. PubMed ID: 10806423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol formation and enzyme activities around glucose-6-phosphate in Kluyveromyces marxianus CBS 6556 exposed to glucose or lactose excess.
    Bellaver LH; de Carvalho NM; Abrahão-Neto J; Gombert AK
    FEMS Yeast Res; 2004 May; 4(7):691-8. PubMed ID: 15093772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation.
    Yamaoka C; Kurita O; Kubo T
    Microbiol Res; 2014 Dec; 169(12):907-14. PubMed ID: 24932883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in regulation of yeast gluconeogenesis revealed by Cat8p-independent activation of PCK1 and FBP1 genes in Kluyveromyces lactis.
    Georis I; Krijger JJ; Breunig KD; Vandenhaute J
    Mol Gen Genet; 2000 Sep; 264(1-2):193-203. PubMed ID: 11016849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359.
    Kiers J; Zeeman AM; Luttik M; Thiele C; Castrillo JI; Steensma HY; van Dijken JP; Pronk JT
    Yeast; 1998 Mar; 14(5):459-69. PubMed ID: 9559553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control analysis of the role of triosephosphate isomerase in glucose metabolism in Lactococcus lactis.
    Solem C; Koebmann B; Jensen PR
    IET Syst Biol; 2008 Mar; 2(2):64-72. PubMed ID: 18397117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose metabolism and ethanol production in adh multiple and null mutants of Kluyveromyces lactis.
    Saliola M; Bellardi S; Marta I; Falcone C
    Yeast; 1994 Sep; 10(9):1133-40. PubMed ID: 7754703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria.
    Overkamp KM; Bakker BM; Steensma HY; van Dijken JP; Pronk JT
    Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source.
    Fonseca GG; Gombert AK; Heinzle E; Wittmann C
    FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae.
    Semkiv MV; Dmytruk KV; Abbas CA; Sibirny AA
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4403-4416. PubMed ID: 28280870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis.
    Goffrini P; Wésolowski-Louvel M; Ferrero I
    Mol Gen Genet; 1991 Sep; 228(3):401-9. PubMed ID: 1896011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis.
    Chen M; Thelen JJ
    Plant Cell; 2010 Jan; 22(1):77-90. PubMed ID: 20097871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of glycerol production in Saccharomyces cerevisiae.
    Overkamp KM; Bakker BM; Kötter P; Luttik MA; Van Dijken JP; Pronk JT
    Appl Environ Microbiol; 2002 Jun; 68(6):2814-21. PubMed ID: 12039737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The oxygen level determines the fermentation pattern in Kluyveromyces lactis.
    Merico A; Galafassi S; Piskur J; Compagno C
    FEMS Yeast Res; 2009 Aug; 9(5):749-56. PubMed ID: 19500150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transdehydrogenase genes KlNDE1 and KlNDI1 regulate the expression of KlGUT2 in the yeast Kluyveromyces lactis.
    Saliola M; D'Amici S; Sponziello M; Mancini P; Tassone P; Falcone C
    FEMS Yeast Res; 2010 Aug; 10(5):518-26. PubMed ID: 20491935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of the Kluyveromyces lactis KlPDA1 gene leads to loss of pyruvate dehydrogenase activity, impairs growth on glucose and triggers aerobic alcoholic fermentation.
    Zeeman AM; Luttik MAH; Thiele C; van Dijken JP; Pronk JT; Steensma HY
    Microbiology (Reading); 1998 Dec; 144 ( Pt 12)():3437-3446. PubMed ID: 9884236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.