These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 12455951)
1. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Winkler A; Arkind C; Mattison CP; Burkholder A; Knoche K; Ota I Eukaryot Cell; 2002 Apr; 1(2):163-73. PubMed ID: 12455951 [TBL] [Abstract][Full Text] [Related]
2. Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1. Jacoby T; Flanagan H; Faykin A; Seto AG; Mattison C; Ota I J Biol Chem; 1997 Jul; 272(28):17749-55. PubMed ID: 9211927 [TBL] [Abstract][Full Text] [Related]
3. Differential regulation of the cell wall integrity mitogen-activated protein kinase pathway in budding yeast by the protein tyrosine phosphatases Ptp2 and Ptp3. Mattison CP; Spencer SS; Kresge KA; Lee J; Ota IM Mol Cell Biol; 1999 Nov; 19(11):7651-60. PubMed ID: 10523653 [TBL] [Abstract][Full Text] [Related]
4. Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Wurgler-Murphy SM; Maeda T; Witten EA; Saito H Mol Cell Biol; 1997 Mar; 17(3):1289-97. PubMed ID: 9032256 [TBL] [Abstract][Full Text] [Related]
5. Regulation of the osmoregulatory HOG MAPK cascade in yeast. Saito H; Tatebayashi K J Biochem; 2004 Sep; 136(3):267-72. PubMed ID: 15598881 [TBL] [Abstract][Full Text] [Related]
6. Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. Hahn JS; Thiele DJ J Biol Chem; 2002 Jun; 277(24):21278-84. PubMed ID: 11923319 [TBL] [Abstract][Full Text] [Related]
7. Two activating phosphorylation sites of Pbs2 MAP2K in the yeast HOG pathway are differentially dephosphorylated by four PP2C phosphatases Ptc1-Ptc4. Tatebayashi K; Saito H J Biol Chem; 2023 Apr; 299(4):104569. PubMed ID: 36870684 [TBL] [Abstract][Full Text] [Related]
8. Interaction between the transmembrane domains of Sho1 and Opy2 enhances the signaling efficiency of the Hog1 MAP kinase cascade in Saccharomyces cerevisiae. Takayama T; Yamamoto K; Saito H; Tatebayashi K PLoS One; 2019; 14(1):e0211380. PubMed ID: 30682143 [TBL] [Abstract][Full Text] [Related]
9. Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. O'Rourke SM; Herskowitz I Mol Biol Cell; 2004 Feb; 15(2):532-42. PubMed ID: 14595107 [TBL] [Abstract][Full Text] [Related]
10. Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms. Tanaka K; Tatebayashi K; Nishimura A; Yamamoto K; Yang HY; Saito H Sci Signal; 2014 Feb; 7(314):ra21. PubMed ID: 24570489 [TBL] [Abstract][Full Text] [Related]
11. A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel with the Sho1 branch. O'Rourke SM; Herskowitz I Mol Cell Biol; 2002 Jul; 22(13):4739-49. PubMed ID: 12052881 [TBL] [Abstract][Full Text] [Related]
12. Crosstalk between Saccharomycescerevisiae SAPKs Hog1 and Mpk1 is mediated by glycerol accumulation. Laz EV; Lee J; Levin DE Fungal Biol; 2020 May; 124(5):361-367. PubMed ID: 32389298 [TBL] [Abstract][Full Text] [Related]
13. Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive HOG1 allele. Westfall PJ; Thorner J Eukaryot Cell; 2006 Aug; 5(8):1215-28. PubMed ID: 16896207 [TBL] [Abstract][Full Text] [Related]
14. A specific protein-protein interaction accounts for the in vivo substrate selectivity of Ptp3 towards the Fus3 MAP kinase. Zhan XL; Guan KL Genes Dev; 1999 Nov; 13(21):2811-27. PubMed ID: 10557209 [TBL] [Abstract][Full Text] [Related]
16. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. Tatebayashi K; Takekawa M; Saito H EMBO J; 2003 Jul; 22(14):3624-34. PubMed ID: 12853477 [TBL] [Abstract][Full Text] [Related]
17. [Mechanism of HOG-MAPK pathway in regulating mycotoxins formation under environmental stresses]. Ma Y; Li M; Wang Z; Liao L; Zheng Y; Liu Y Sheng Wu Gong Cheng Xue Bao; 2022 Jul; 38(7):2433-2446. PubMed ID: 35871615 [TBL] [Abstract][Full Text] [Related]
18. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Warmka J; Hanneman J; Lee J; Amin D; Ota I Mol Cell Biol; 2001 Jan; 21(1):51-60. PubMed ID: 11113180 [TBL] [Abstract][Full Text] [Related]
19. Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae. Vázquez-Ibarra A; Subirana L; Ongay-Larios L; Kawasaki L; Rojas-Ortega E; Rodríguez-González M; de Nadal E; Posas F; Coria R FEBS J; 2018 Mar; 285(6):1079-1096. PubMed ID: 29341399 [TBL] [Abstract][Full Text] [Related]
20. Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. Tatebayashi K; Yamamoto K; Tanaka K; Tomida T; Maruoka T; Kasukawa E; Saito H EMBO J; 2006 Jul; 25(13):3033-44. PubMed ID: 16778768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]