These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 12456003)

  • 21. Key role of Ser562/661 in Snf1-dependent regulation of Cat8p in Saccharomyces cerevisiae and Kluyveromyces lactis.
    Charbon G; Breunig KD; Wattiez R; Vandenhaute J; Noël-Georis I
    Mol Cell Biol; 2004 May; 24(10):4083-91. PubMed ID: 15121831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution and Functional Trajectory of Sir1 in Gene Silencing.
    Ellahi A; Rine J
    Mol Cell Biol; 2016 Jan; 36(7):1164-79. PubMed ID: 26811328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kluyveromyces lactis SSO1 and SEB1 genes are functional in Saccharomyces cerevisiae and enhance production of secreted proteins when overexpressed.
    Toikkanen JH; Sundqvist L; Keränen S
    Yeast; 2004 Sep; 21(12):1045-55. PubMed ID: 15449305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Separation of transcriptional activation and silencing functions of the RAP1-encoded repressor/activator protein 1: isolation of viable mutants affecting both silencing and telomere length.
    Sussel L; Shore D
    Proc Natl Acad Sci U S A; 1991 Sep; 88(17):7749-53. PubMed ID: 1881914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning and characterization of Kluyveromyces lactis SEC14, a gene whose product stimulates Golgi secretory function in Saccharomyces cerevisiae.
    Salama SR; Cleves AE; Malehorn DE; Whitters EA; Bankaitis VA
    J Bacteriol; 1990 Aug; 172(8):4510-21. PubMed ID: 2198263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kluyveromyces lactis maintains Saccharomyces cerevisiae intron-encoded splicing signals.
    Deshler JO; Larson GP; Rossi JJ
    Mol Cell Biol; 1989 May; 9(5):2208-13. PubMed ID: 2664472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separable Crossover-Promoting and Crossover-Constraining Aspects of Zip1 Activity during Budding Yeast Meiosis.
    Voelkel-Meiman K; Johnston C; Thappeta Y; Subramanian VV; Hochwagen A; MacQueen AJ
    PLoS Genet; 2015 Jun; 11(6):e1005335. PubMed ID: 26114667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements.
    Shore D; Nasmyth K
    Cell; 1987 Dec; 51(5):721-32. PubMed ID: 3315231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and expression of the ABF1-regulated ribosomal protein S33 gene in Kluyveromyces.
    Hoekstra R; Ferreira PM; Bootsman TC; Mager WH; Planta RJ
    Yeast; 1992 Nov; 8(11):949-59. PubMed ID: 1481571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutational analysis of centromeric DNA elements of Kluyveromyces lactis and their role in determining the species specificity of the highly homologous centromeres from K. lactis and Saccharomyces cerevisiae.
    Heus JJ; Zonneveld BJ; Steensma HY; Van den Berg JA
    Mol Gen Genet; 1994 May; 243(3):325-33. PubMed ID: 8190085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of glycolysis by casein kinase I (Rag8p) in Kluyveromyces lactis involves a DNA-binding protein, Sck1p, a homologue of Sgc1p of Saccharomyces cerevisiae.
    Lemaire M; Guyon A; Betina S; Wésolowski-Louvel M
    Curr Genet; 2002 Mar; 40(6):355-64. PubMed ID: 11919674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis.
    Wesolowski-Louvel M; Tanguy-Rougeau C; Fukuhara H
    Yeast; 1988 Mar; 4(1):71-81. PubMed ID: 3059713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional conservation of yeast mtTFB despite extensive sequence divergence.
    Carrodeguas JA; Yun S; Shadel GS; Clayton DA; Bogenhagen DF
    Gene Expr; 1996; 6(4):219-30. PubMed ID: 9196077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation of GCR1, a major transcription factor of glycolytic genes in Saccharomyces cerevisiae, from Kluyveromyces lactis.
    Haw R; Devi Yarragudi A; Uemura H
    Yeast; 2001 Jun; 18(8):729-35. PubMed ID: 11378900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A region of the Sir1 protein dedicated to recognition of a silencer and required for interaction with the Orc1 protein in saccharomyces cerevisiae.
    Gardner KA; Rine J; Fox CA
    Genetics; 1999 Jan; 151(1):31-44. PubMed ID: 9872946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of a gene similar to BIK1 in the yeast Kluyveromyces lactis.
    Lamas-Maceiras M; Cerdán ME; Lloret A; Freire-Picos MA
    Yeast; 2004 Oct; 21(13):1067-75. PubMed ID: 15484289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloning and characterization of the Kluyveromyces lactis homologs of the Saccharomyces cerevisiae RED1 and HOP1 genes.
    Smith AV; Roeder GS
    Chromosoma; 2000; 109(1-2):50-61. PubMed ID: 10855495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. UASrpg can function as a heterochromatin boundary element in yeast.
    Bi X; Broach JR
    Genes Dev; 1999 May; 13(9):1089-101. PubMed ID: 10323861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Yeast general transcription factor GFI: sequence requirements for binding to DNA and evolutionary conservation.
    Dorsman JC; van Heeswijk WC; Grivell LA
    Nucleic Acids Res; 1990 May; 18(9):2769-76. PubMed ID: 2187179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The consensus sequence of Kluyveromyces lactis centromeres shows homology to functional centromeric DNA from Saccharomyces cerevisiae.
    Heus JJ; Zonneveld BJ; de Steensma HY; van den Berg JA
    Mol Gen Genet; 1993 Jan; 236(2-3):355-62. PubMed ID: 8437580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.