BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 12456267)

  • 1. The catalytic domains of thiamine triphosphatase and CyaB-like adenylyl cyclase define a novel superfamily of domains that bind organic phosphates.
    Iyer LM; Aravind L
    BMC Genomics; 2002 Nov; 3(1):33. PubMed ID: 12456267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiamine triphosphatase and the CYTH superfamily of proteins.
    Bettendorff L; Wins P
    FEBS J; 2013 Dec; 280(24):6443-55. PubMed ID: 24021036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The archaeal triphosphate tunnel metalloenzyme SaTTM defines structural determinants for the diverse activities in the CYTH protein family.
    Vogt MS; Ngouoko Nguepbeu RR; Mohr MKF; Albers SV; Essen LO; Banerjee A
    J Biol Chem; 2021 Jul; 297(1):100820. PubMed ID: 34029589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteins with CHADs (Conserved Histidine α-Helical Domains) Are Attached to Polyphosphate Granules
    Tumlirsch T; Jendrossek D
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brachypodium distachyon triphosphate tunnel metalloenzyme 3 is both a triphosphatase and an adenylyl cyclase upregulated by mechanical wounding.
    Świeżawska B; Duszyn M; Kwiatkowski M; Jaworski K; Pawełek A; Szmidt-Jaworska A
    FEBS Lett; 2020 Mar; 594(6):1101-1111. PubMed ID: 31785160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural determinants of specificity and catalytic mechanism in mammalian 25-kDa thiamine triphosphatase.
    Delvaux D; Kerff F; Murty MR; Lakaye B; Czerniecki J; Kohn G; Wins P; Herman R; Gabelica V; Heuze F; Tordoir X; Marée R; Matagne A; Charlier P; De Pauw E; Bettendorff L
    Biochim Biophys Acta; 2013 Oct; 1830(10):4513-23. PubMed ID: 23707715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-function analysis of Plasmodium RNA triphosphatase and description of a triphosphate tunnel metalloenzyme superfamily that includes Cet1-like RNA triphosphatases and CYTH proteins.
    Gong C; Smith P; Shuman S
    RNA; 2006 Aug; 12(8):1468-74. PubMed ID: 16809816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A specific inorganic triphosphatase from Nitrosomonas europaea: structure and catalytic mechanism.
    Delvaux D; Murty MR; Gabelica V; Lakaye B; Lunin VV; Skarina T; Onopriyenko O; Kohn G; Wins P; De Pauw E; Bettendorff L
    J Biol Chem; 2011 Sep; 286(39):34023-35. PubMed ID: 21840996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presence of a classical RRM-fold palm domain in Thg1-type 3'- 5'nucleic acid polymerases and the origin of the GGDEF and CRISPR polymerase domains.
    Anantharaman V; Iyer LM; Aravind L
    Biol Direct; 2010 Jun; 5():43. PubMed ID: 20591188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes.
    Burroughs AM; Allen KN; Dunaway-Mariano D; Aravind L
    J Mol Biol; 2006 Sep; 361(5):1003-34. PubMed ID: 16889794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure and biochemical analyses reveal that the Arabidopsis triphosphate tunnel metalloenzyme AtTTM3 is a tripolyphosphatase involved in root development.
    Moeder W; Garcia-Petit C; Ung H; Fucile G; Samuel MA; Christendat D; Yoshioka K
    Plant J; 2013 Nov; 76(4):615-26. PubMed ID: 24004165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of novel members, structure-function analysis and evolutionary classification of the 2H phosphoesterase superfamily.
    Mazumder R; Iyer LM; Vasudevan S; Aravind L
    Nucleic Acids Res; 2002 Dec; 30(23):5229-43. PubMed ID: 12466548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High inorganic triphosphatase activities in bacteria and mammalian cells: identification of the enzymes involved.
    Kohn G; Delvaux D; Lakaye B; Servais AC; Scholer G; Fillet M; Elias B; Derochette JM; Crommen J; Wins P; Bettendorff L
    PLoS One; 2012; 7(9):e43879. PubMed ID: 22984449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The adenylyl and guanylyl cyclase superfamily.
    Hurley JH
    Curr Opin Struct Biol; 1998 Dec; 8(6):770-7. PubMed ID: 9914257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer.
    Leipe DD; Koonin EV; Aravind L
    J Mol Biol; 2004 Oct; 343(1):1-28. PubMed ID: 15381417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The NYN domains: novel predicted RNAses with a PIN domain-like fold.
    Anantharaman V; Aravind L
    RNA Biol; 2006; 3(1):18-27. PubMed ID: 17114934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The YHS-Domain of an Adenylyl Cyclase from Mycobacterium phlei Is a Probable Copper-Sensor Module.
    Linder JU
    PLoS One; 2015; 10(10):e0141843. PubMed ID: 26512893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoesterase domains associated with DNA polymerases of diverse origins.
    Aravind L; Koonin EV
    Nucleic Acids Res; 1998 Aug; 26(16):3746-52. PubMed ID: 9685491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Class III nucleotide cyclases in bacteria and archaebacteria: lineage-specific expansion of adenylyl cyclases and a dearth of guanylyl cyclases.
    Shenroy AR; Visweswariah SS
    FEBS Lett; 2004 Mar; 561(1-3):11-21. PubMed ID: 15043055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.