These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 12456873)

  • 1. On filtering false positive transmembrane protein predictions.
    Cserzö M; Eisenhaber F; Eisenhaber B; Simon I
    Protein Eng; 2002 Sep; 15(9):745-52. PubMed ID: 12456873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TM or not TM: transmembrane protein prediction with low false positive rate using DAS-TMfilter.
    Cserzo M; Eisenhaber F; Eisenhaber B; Simon I
    Bioinformatics; 2004 Jan; 20(1):136-7. PubMed ID: 14693825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The First Quarter Century of the Dense Alignment Surface Transmembrane Prediction Method.
    Cserző M; Eisenhaber B; Eisenhaber F; Magyar C; Simon I
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How strongly do sequence conservation patterns and empirical scales correlate with exposure patterns of transmembrane helices of membrane proteins?
    Park Y; Helms V
    Biopolymers; 2006 Nov; 83(4):389-99. PubMed ID: 16838301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TM-Aligner: Multiple sequence alignment tool for transmembrane proteins with reduced time and improved accuracy.
    Bhat B; Ganai NA; Andrabi SM; Shah RA; Singh A
    Sci Rep; 2017 Oct; 7(1):12543. PubMed ID: 28970546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence.
    Maurer-Stroh S; Eisenhaber B; Eisenhaber F
    J Mol Biol; 2002 Apr; 317(4):541-57. PubMed ID: 11955008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PRALINETM: a strategy for improved multiple alignment of transmembrane proteins.
    Pirovano W; Feenstra KA; Heringa J
    Bioinformatics; 2008 Feb; 24(4):492-7. PubMed ID: 18174178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An amino acid "transmembrane tendency" scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationship to biological hydrophobicity.
    Zhao G; London E
    Protein Sci; 2006 Aug; 15(8):1987-2001. PubMed ID: 16877712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction Enhancement of Residue Real-Value Relative Accessible Surface Area in Transmembrane Helical Proteins by Solving the Output Preference Problem of Machine Learning-Based Predictors.
    Xiao F; Shen HB
    J Chem Inf Model; 2015 Nov; 55(11):2464-74. PubMed ID: 26455366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. More than 1,001 problems with protein domain databases: transmembrane regions, signal peptides and the issue of sequence homology.
    Wong WC; Maurer-Stroh S; Eisenhaber F
    PLoS Comput Biol; 2010 Jul; 6(7):e1000867. PubMed ID: 20686689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved detection of homologous membrane proteins by inclusion of information from topology predictions.
    Hedman M; Deloof H; Von Heijne G; Elofsson A
    Protein Sci; 2002 Mar; 11(3):652-8. PubMed ID: 11847287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method.
    Cserzö M; Wallin E; Simon I; von Heijne G; Elofsson A
    Protein Eng; 1997 Jun; 10(6):673-6. PubMed ID: 9278280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Alpha Helical Transmembrane Proteins Using HMMs.
    Tsaousis GN; Theodoropoulou MC; Hamodrakas SJ; Bagos PG
    Methods Mol Biol; 2017; 1552():63-82. PubMed ID: 28224491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction.
    Pilpel Y; Ben-Tal N; Lancet D
    J Mol Biol; 1999 Dec; 294(4):921-35. PubMed ID: 10588897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced recognition of protein transmembrane domains with prediction-based structural profiles.
    Cao B; Porollo A; Adamczak R; Jarrell M; Meller J
    Bioinformatics; 2006 Feb; 22(3):303-9. PubMed ID: 16293670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MaxSubSeq: an algorithm for segment-length optimization. The case study of the transmembrane spanning segments.
    Fariselli P; Finelli M; Marchignoli D; Martelli PL; Rossi I; Casadio R
    Bioinformatics; 2003 Mar; 19(4):500-5. PubMed ID: 12611805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TMbed: transmembrane proteins predicted through language model embeddings.
    Bernhofer M; Rost B
    BMC Bioinformatics; 2022 Aug; 23(1):326. PubMed ID: 35941534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online tools for predicting integral membrane proteins.
    Bigelow H; Rost B
    Methods Mol Biol; 2009; 528():3-23. PubMed ID: 19153681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combination of compositional index and genetic algorithm for predicting transmembrane helical segments.
    Zaki N; Bouktif S; Lazarova-Molnar S
    PLoS One; 2011; 6(7):e21821. PubMed ID: 21814556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PSOFuzzySVM-TMH: identification of transmembrane helix segments using ensemble feature space by incorporated fuzzy support vector machine.
    Hayat M; Tahir M
    Mol Biosyst; 2015 Aug; 11(8):2255-62. PubMed ID: 26054033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.