These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 12456877)

  • 1. Surface crystallization of supercooled water in clouds.
    Tabazadeh A; Djikaev YS; Reiss H
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):15873-8. PubMed ID: 12456877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of liquid clouds to homogenous freezing parameterizations.
    Herbert RJ; Murray BJ; Dobbie SJ; Koop T
    Geophys Res Lett; 2015 Mar; 42(5):1599-1605. PubMed ID: 26074652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rate of Homogenous Nucleation of Ice in Supercooled Water.
    Atkinson JD; Murray BJ; O'Sullivan D
    J Phys Chem A; 2016 Aug; 120(33):6513-20. PubMed ID: 27410458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the role of surface charges for homogeneous freezing of supercooled water microdroplets.
    Rzesanke D; Nadolny J; Duft D; Müller R; Kiselev A; Leisner T
    Phys Chem Chem Phys; 2012 Jul; 14(26):9359-63. PubMed ID: 22294097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep convective clouds with sustained supercooled liquid water down to -37.5 degrees C.
    Rosenfeld D; Woodley WL
    Nature; 2000 May; 405(6785):440-2. PubMed ID: 10839535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A physically constrained classical description of the homogeneous nucleation of ice in water.
    Koop T; Murray BJ
    J Chem Phys; 2016 Dec; 145(21):211915. PubMed ID: 28799369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure and crystal order during freezing of supercooled water drops.
    Kalita A; Mrozek-McCourt M; Kaldawi TF; Willmott PR; Loh ND; Marte S; Sierra RG; Laksmono H; Koglin JE; Hayes MJ; Paul RH; Guillet SAH; Aquila AL; Liang M; Boutet S; Stan CA
    Nature; 2023 Aug; 620(7974):557-561. PubMed ID: 37587300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of homogeneous crystal nucleation in water droplets on their radii and its implication for modeling the formation of ice particles in cirrus clouds.
    Djikaev YS; Ruckenstein E
    Phys Chem Chem Phys; 2017 Aug; 19(30):20075-20081. PubMed ID: 28725886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of the homogeneous freezing of water.
    Murray BJ; Broadley SL; Wilson TW; Bull SJ; Wills RH; Christenson HK; Murray EJ
    Phys Chem Chem Phys; 2010 Sep; 12(35):10380-7. PubMed ID: 20577704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty.
    Riechers B; Wittbracht F; Hütten A; Koop T
    Phys Chem Chem Phys; 2013 Apr; 15(16):5873-87. PubMed ID: 23486888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ice nucleation by particles containing long-chain fatty acids of relevance to freezing by sea spray aerosols.
    DeMott PJ; Mason RH; McCluskey CS; Hill TCJ; Perkins RJ; Desyaterik Y; Bertram AK; Trueblood JV; Grassian VH; Qiu Y; Molinero V; Tobo Y; Sultana CM; Lee C; Prather KA
    Environ Sci Process Impacts; 2018 Nov; 20(11):1559-1569. PubMed ID: 30382263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions.
    Koop T; Luo B; Tsias A; Peter T
    Nature; 2000 Aug; 406(6796):611-4. PubMed ID: 10949298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.
    Braham RR
    Science; 1959 Jan; 129(3342):123-9. PubMed ID: 17745322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice nucleation at the nanoscale probes no man's land of water.
    Li T; Donadio D; Galli G
    Nat Commun; 2013; 4():1887. PubMed ID: 23695681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.
    Knopf DA; Lopez MD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8056-68. PubMed ID: 19727513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous freezing of water droplets for different volumes and cooling rates.
    Shardt N; Isenrich FN; Waser B; Marcolli C; Kanji ZA; deMello AJ; Lohmann U
    Phys Chem Chem Phys; 2022 Nov; 24(46):28213-28221. PubMed ID: 36413087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.
    Alpert PA; Aller JY; Knopf DA
    Phys Chem Chem Phys; 2011 Nov; 13(44):19882-94. PubMed ID: 21912788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops.
    Yang F; Cruikshank O; He W; Kostinski A; Shaw RA
    Phys Rev E; 2018 Feb; 97(2-1):023103. PubMed ID: 29548219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice nucleation by particles immersed in supercooled cloud droplets.
    Murray BJ; O'Sullivan D; Atkinson JD; Webb ME
    Chem Soc Rev; 2012 Oct; 41(19):6519-54. PubMed ID: 22932664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.