These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
461 related articles for article (PubMed ID: 12456892)
21. Direct evolution of riboflavin kinase significantly enhance flavin mononucleotide synthesis by design and optimization of flavin mononucleotide riboswitch. Du Y; Zhang X; Zhang H; Zhu R; Zhao Z; Han J; Zhang D; Zhang X; Zhang X; Pan X; You J; Rao Z Bioresour Technol; 2023 Aug; 381():128774. PubMed ID: 36822556 [TBL] [Abstract][Full Text] [Related]
22. Molecular sensing by the aptamer domain of the FMN riboswitch: a general model for ligand binding by conformational selection. Vicens Q; Mondragón E; Batey RT Nucleic Acids Res; 2011 Oct; 39(19):8586-98. PubMed ID: 21745821 [TBL] [Abstract][Full Text] [Related]
23. Genetic control by a metabolite binding mRNA. Nahvi A; Sudarsan N; Ebert MS; Zou X; Brown KL; Breaker RR Chem Biol; 2002 Sep; 9(9):1043. PubMed ID: 12323379 [TBL] [Abstract][Full Text] [Related]
24. Kinetic analysis of tRNA-directed transcription antitermination of the Bacillus subtilis glyQS gene in vitro. Grundy FJ; Henkin TM J Bacteriol; 2004 Aug; 186(16):5392-9. PubMed ID: 15292140 [TBL] [Abstract][Full Text] [Related]
25. Molecular biology. Turning gene regulation on its head. Losick R; Sonenshein AL Science; 2001 Sep; 293(5537):2018-9. PubMed ID: 11557871 [No Abstract] [Full Text] [Related]
26. trp RNA-binding attenuation protein-5' stem-loop RNA interaction is required for proper transcription attenuation control of the Bacillus subtilis trpEDCFBA operon. Du H; Yakhnin AV; Dharmaraj S; Babitzke P J Bacteriol; 2000 Apr; 182(7):1819-27. PubMed ID: 10714985 [TBL] [Abstract][Full Text] [Related]
27. Mutational analysis of the purine riboswitch aptamer domain. Gilbert SD; Love CE; Edwards AL; Batey RT Biochemistry; 2007 Nov; 46(46):13297-309. PubMed ID: 17960911 [TBL] [Abstract][Full Text] [Related]
29. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties. Rode AB; Endoh T; Sugimoto N Angew Chem Int Ed Engl; 2015 Jan; 54(3):905-9. PubMed ID: 25470002 [TBL] [Abstract][Full Text] [Related]
30. The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element. Dambach M; Sandoval M; Updegrove TB; Anantharaman V; Aravind L; Waters LS; Storz G Mol Cell; 2015 Mar; 57(6):1099-1109. PubMed ID: 25794618 [TBL] [Abstract][Full Text] [Related]
31. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Batey RT; Gilbert SD; Montange RK Nature; 2004 Nov; 432(7015):411-5. PubMed ID: 15549109 [TBL] [Abstract][Full Text] [Related]
32. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context. Marcano-Velázquez JG; Batey RT J Biol Chem; 2015 Feb; 290(7):4464-75. PubMed ID: 25550163 [TBL] [Abstract][Full Text] [Related]
33. Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum. Vogl C; Grill S; Schilling O; Stülke J; Mack M; Stolz J J Bacteriol; 2007 Oct; 189(20):7367-75. PubMed ID: 17693491 [TBL] [Abstract][Full Text] [Related]
34. Bacterial flavin mononucleotide riboswitches as targets for flavin analogs. Pedrolli DB; Mack M Methods Mol Biol; 2014; 1103():165-76. PubMed ID: 24318894 [TBL] [Abstract][Full Text] [Related]
35. Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism. Choonee N; Even S; Zig L; Putzer H Nucleic Acids Res; 2007; 35(5):1578-88. PubMed ID: 17289755 [TBL] [Abstract][Full Text] [Related]
36. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC. Mack M; van Loon AP; Hohmann HP J Bacteriol; 1998 Feb; 180(4):950-5. PubMed ID: 9473052 [TBL] [Abstract][Full Text] [Related]