These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 12456892)

  • 61. Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis.
    Richter G; Fischer M; Krieger C; Eberhardt S; Lüttgen H; Gerstenschläger I; Bacher A
    J Bacteriol; 1997 Mar; 179(6):2022-8. PubMed ID: 9068650
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Riboswitch-mediated regulation of riboflavin biosynthesis genes in prokaryotes.
    Vikram ; Mishra V; Rana A; Ahire JJ
    3 Biotech; 2022 Oct; 12(10):278. PubMed ID: 36275359
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Take your vitamins with a pinch of RNA.
    Weisberg RA; Storz G
    Mol Cell; 2002 Dec; 10(6):1266-8. PubMed ID: 12504003
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis.
    Ott E; Stolz J; Lehmann M; Mack M
    RNA Biol; 2009; 6(3):276-80. PubMed ID: 19333008
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structural insights into the interactions of flavin mononucleotide (FMN) and riboflavin with FMN riboswitch: a molecular dynamics simulation study.
    Wakchaure PD; Jana K; Ganguly B
    J Biomol Struct Dyn; 2020 Aug; 38(13):3856-3866. PubMed ID: 31498025
    [TBL] [Abstract][Full Text] [Related]  

  • 66. NusG controls transcription pausing and RNA polymerase translocation throughout the
    Yakhnin AV; FitzGerald PC; McIntosh C; Yakhnin H; Kireeva M; Turek-Herman J; Mandell ZF; Kashlev M; Babitzke P
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21628-21636. PubMed ID: 32817529
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A protein-dependent riboswitch controlling ptsGHI operon expression in Bacillus subtilis: RNA structure rather than sequence provides interaction specificity.
    Schilling O; Langbein I; Müller M; Schmalisch MH; Stülke J
    Nucleic Acids Res; 2004; 32(9):2853-64. PubMed ID: 15155854
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Genome-wide identification of natural RNA aptamers in prokaryotes and eukaryotes.
    Tapsin S; Sun M; Shen Y; Zhang H; Lim XN; Susanto TT; Yang SL; Zeng GS; Lee J; Lezhava A; Ang EL; Zhang LH; Wang Y; Zhao H; Nagarajan N; Wan Y
    Nat Commun; 2018 Mar; 9(1):1289. PubMed ID: 29599443
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Riboflavin Transporters RFVT/SLC52A Mediate Translocation of Riboflavin, Rather than FMN or FAD, across Plasma Membrane.
    Jin C; Yao Y; Yonezawa A; Imai S; Yoshimatsu H; Otani Y; Omura T; Nakagawa S; Nakagawa T; Matsubara K
    Biol Pharm Bull; 2017; 40(11):1990-1995. PubMed ID: 29093349
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Extensive Identification of Bacterial Riboflavin Transporters and Their Distribution across Bacterial Species.
    Gutiérrez-Preciado A; Torres AG; Merino E; Bonomi HR; Goldbaum FA; García-Angulo VA
    PLoS One; 2015; 10(5):e0126124. PubMed ID: 25938806
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Lysine-induced premature transcription termination in the lysC operon of Bacillus subtilis.
    Kochhar S; Paulus H
    Microbiology (Reading); 1996 Jul; 142 ( Pt 7)():1635-9. PubMed ID: 8757727
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Functionally uncoupled transcription-translation in Bacillus subtilis.
    Johnson GE; Lalanne JB; Peters ML; Li GW
    Nature; 2020 Sep; 585(7823):124-128. PubMed ID: 32848247
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression.
    Winkler W; Nahvi A; Breaker RR
    Nature; 2002 Oct; 419(6910):952-6. PubMed ID: 12410317
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transport and binding of riboflavin by Bacillus subtilis.
    Cecchini G; Perl M; Lipsick J; Singer TP; Kearney EB
    J Biol Chem; 1979 Aug; 254(15):7295-301. PubMed ID: 110806
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mechanism of foetal wastage following immunoneutralization of riboflavin carrier protein in the pregnant rat: disturbances in flavin coenzyme levels.
    Krishnamurthy K; Surolia N; Adiga PR
    FEBS Lett; 1984 Dec; 178(1):87-91. PubMed ID: 6500065
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ligand recognition determinants of guanine riboswitches.
    Mulhbacher J; Lafontaine DA
    Nucleic Acids Res; 2007; 35(16):5568-80. PubMed ID: 17704135
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism.
    Turner RJ; Lu Y; Switzer RL
    J Bacteriol; 1994 Jun; 176(12):3708-22. PubMed ID: 8206849
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Riboswitches].
    Bugała K; Zywicki M; Wyszko E; Barciszewska MZ; Barciszewski J
    Postepy Biochem; 2005; 51(2):111-9. PubMed ID: 16209348
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains.
    Sevrioukova I; Truan G; Peterson JA
    Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.