BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12457238)

  • 1. Down-regulation of volume-sensitive Cl- channels by CFTR is mediated by the second nucleotide-binding domain.
    Ando-Akatsuka Y; Abdullaev IF; Lee EL; Okada Y; Sabirov RZ
    Pflugers Arch; 2002 Nov; 445(2):177-86. PubMed ID: 12457238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cystic fibrosis mutation G1349D within the signature motif LSHGH of NBD2 abolishes the activation of CFTR chloride channels by genistein.
    Melin P; Thoreau V; Norez C; Bilan F; Kitzis A; Becq F
    Biochem Pharmacol; 2004 Jun; 67(12):2187-96. PubMed ID: 15163550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain.
    Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA
    Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CFTR Cl- channel and CFTR-associated ATP channel: distinct pores regulated by common gates.
    Sugita M; Yue Y; Foskett JK
    EMBO J; 1998 Feb; 17(4):898-908. PubMed ID: 9463368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Walker B motif of the second nucleotide-binding domain (NBD2) of CFTR plays a key role in ATPase activity by the NBD1-NBD2 heterodimer.
    Stratford FL; Ramjeesingh M; Cheung JC; Huan LJ; Bear CE
    Biochem J; 2007 Jan; 401(2):581-6. PubMed ID: 16989640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain interdependence in the biosynthetic assembly of CFTR.
    Cui L; Aleksandrov L; Chang XB; Hou YX; He L; Hegedus T; Gentzsch M; Aleksandrov A; Balch WE; Riordan JR
    J Mol Biol; 2007 Jan; 365(4):981-94. PubMed ID: 17113596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Walker mutations reveal loose relationship between catalytic and channel-gating activities of purified CFTR (cystic fibrosis transmembrane conductance regulator).
    Ramjeesingh M; Li C; Garami E; Huan LJ; Galley K; Wang Y; Bear CE
    Biochemistry; 1999 Feb; 38(5):1463-8. PubMed ID: 9931011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CFTR mediates apoptotic volume decrease and cell death by controlling glutathione efflux and ROS production in cultured mice proximal tubules.
    l'Hoste S; Chargui A; Belfodil R; Corcelle E; Duranton C; Rubera I; Poujeol C; Mograbi B; Tauc M; Poujeol P
    Am J Physiol Renal Physiol; 2010 Feb; 298(2):F435-53. PubMed ID: 19906953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of alpha-aminoazaheterocycle-methylglyoxal adducts as a new class of high-affinity inhibitors of cystic fibrosis transmembrane conductance regulator chloride channels.
    Routaboul C; Norez C; Melin P; Molina MC; Boucherle B; Bossard F; Noel S; Robert R; Gauthier C; Becq F; Décout JL
    J Pharmacol Exp Ther; 2007 Sep; 322(3):1023-35. PubMed ID: 17578899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ENaC- and CFTR-dependent ion and fluid transport in human middle ear epithelial cells.
    Choi JY; Son EJ; Kim JL; Lee JH; Park HY; Kim SH; Song MH; Yoon JH
    Hear Res; 2006 Jan; 211(1-2):26-32. PubMed ID: 16226002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating.
    Basso C; Vergani P; Nairn AC; Gadsby DC
    J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentiation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents by the chemical solvent tetrahydrofuran.
    Hughes LK; Ju M; Sheppard DN
    Mol Membr Biol; 2008 Sep; 25(6-7):528-38. PubMed ID: 18989824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential sensitivity of the cystic fibrosis (CF)-associated mutants G551D and G1349D to potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel.
    Cai Z; Taddei A; Sheppard DN
    J Biol Chem; 2006 Jan; 281(4):1970-7. PubMed ID: 16311240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme.
    Zeltwanger S; Wang F; Wang GT; Gillis KD; Hwang TC
    J Gen Physiol; 1999 Apr; 113(4):541-54. PubMed ID: 10102935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct interaction of a small-molecule modulator with G551D-CFTR, a cystic fibrosis-causing mutation associated with severe disease.
    Pasyk S; Li C; Ramjeesingh M; Bear CE
    Biochem J; 2009 Feb; 418(1):185-90. PubMed ID: 18945216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics analysis of the wild type and dF508 mutant structures of the human CFTR-nucleotide binding domain 1.
    Bisignano P; Moran O
    Biochimie; 2010 Jan; 92(1):51-7. PubMed ID: 19781595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating.
    Cui L; Aleksandrov L; Hou YX; Gentzsch M; Chen JH; Riordan JR; Aleksandrov AA
    J Physiol; 2006 Apr; 572(Pt 2):347-58. PubMed ID: 16484308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A common mechanism for cystic fibrosis transmembrane conductance regulator protein activation by genistein and benzimidazolone analogs.
    Al-Nakkash L; Hu S; Li M; Hwang TC
    J Pharmacol Exp Ther; 2001 Feb; 296(2):464-72. PubMed ID: 11160632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mg2+ -dependent ATP occlusion at the first nucleotide-binding domain (NBD1) of CFTR does not require the second (NBD2).
    Aleksandrov L; Aleksandrov A; Riordan JR
    Biochem J; 2008 Nov; 416(1):129-36. PubMed ID: 18605986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swelling-induced, CFTR-independent ATP release from a human epithelial cell line: lack of correlation with volume-sensitive cl(-) channels.
    Hazama A; Shimizu T; Ando-Akatsuka Y; Hayashi S; Tanaka S; Maeno E; Okada Y
    J Gen Physiol; 1999 Oct; 114(4):525-33. PubMed ID: 10498671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.