These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 12457563)
1. IRES elements: features of the RNA structure contributing to their activity. Martínez-Salas E; López de Quinto S; Ramos R; Fernández-Miragall O Biochimie; 2002 Aug; 84(8):755-63. PubMed ID: 12457563 [TBL] [Abstract][Full Text] [Related]
2. Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal translation initiation in vivo. López de Quinto S; Martínez-Salas E RNA; 2000 Oct; 6(10):1380-92. PubMed ID: 11073214 [TBL] [Abstract][Full Text] [Related]
3. IRES interaction with translation initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. López de Quinto S; Lafuente E; Martínez-Salas E RNA; 2001 Sep; 7(9):1213-26. PubMed ID: 11565745 [TBL] [Abstract][Full Text] [Related]
4. Riboproteomic analysis of polypeptides interacting with the internal ribosome-entry site element of foot-and-mouth disease viral RNA. Pacheco A; Reigadas S; Martínez-Salas E Proteomics; 2008 Nov; 8(22):4782-90. PubMed ID: 18937254 [TBL] [Abstract][Full Text] [Related]
5. In vivo footprint of a picornavirus internal ribosome entry site reveals differences in accessibility to specific RNA structural elements. Fernández-Miragall O; Martínez-Salas E J Gen Virol; 2007 Nov; 88(Pt 11):3053-3062. PubMed ID: 17947530 [TBL] [Abstract][Full Text] [Related]
6. G3BP1 interacts directly with the FMDV IRES and negatively regulates translation. Galan A; Lozano G; Piñeiro D; Martinez-Salas E FEBS J; 2017 Oct; 284(19):3202-3217. PubMed ID: 28755480 [TBL] [Abstract][Full Text] [Related]
7. Nucleolin Promotes IRES-Driven Translation of Foot-and-Mouth Disease Virus by Supporting the Assembly of Translation Initiation Complexes. Han S; Wang X; Guan J; Wu J; Zhang Y; Li P; Liu Z; Abdullah SW; Zhang Z; Jin Y; Sun S; Guo H J Virol; 2021 Jun; 95(13):e0023821. PubMed ID: 33853964 [TBL] [Abstract][Full Text] [Related]
8. In silico analysis of IRES RNAs of foot-and-mouth disease virus and related picornaviruses. Burks JM; Zwieb C; Müller F; Wower IK; Wower J Arch Virol; 2011 Oct; 156(10):1737-47. PubMed ID: 21681504 [TBL] [Abstract][Full Text] [Related]
9. Evidence of reciprocal tertiary interactions between conserved motifs involved in organizing RNA structure essential for internal initiation of translation. Fernández-Miragall O; Ramos R; Ramajo J; Martínez-Salas E RNA; 2006 Feb; 12(2):223-34. PubMed ID: 16373480 [TBL] [Abstract][Full Text] [Related]
10. A conserved RNA structure within the HCV IRES eIF3-binding site. Collier AJ; Gallego J; Klinck R; Cole PT; Harris SJ; Harrison GP; Aboul-Ela F; Varani G; Walker S Nat Struct Biol; 2002 May; 9(5):375-80. PubMed ID: 11927954 [TBL] [Abstract][Full Text] [Related]
11. Local RNA flexibility perturbation of the IRES element induced by a novel ligand inhibits viral RNA translation. Lozano G; Trapote A; Ramajo J; Elduque X; Grandas A; Robles J; Pedroso E; Martínez-Salas E RNA Biol; 2015; 12(5):555-68. PubMed ID: 25775053 [TBL] [Abstract][Full Text] [Related]
12. Characterization of a cyanobacterial RNase P ribozyme recognition motif in the IRES of foot-and-mouth disease virus reveals a unique structural element. Serrano P; Gomez J; Martínez-Salas E RNA; 2007 Jun; 13(6):849-59. PubMed ID: 17449727 [TBL] [Abstract][Full Text] [Related]
13. Magnesium-dependent folding of a picornavirus IRES element modulates RNA conformation and eIF4G interaction. Lozano G; Fernandez N; Martinez-Salas E FEBS J; 2014 Aug; 281(16):3685-700. PubMed ID: 24961997 [TBL] [Abstract][Full Text] [Related]
14. Sequence and secondary structure requirements in a highly conserved element for foot-and-mouth disease virus internal ribosome entry site activity and eIF4G binding. Bassili G; Tzima E; Song Y; Saleh L; Ochs K; Niepmann M J Gen Virol; 2004 Sep; 85(Pt 9):2555-2565. PubMed ID: 15302949 [TBL] [Abstract][Full Text] [Related]
15. Modification of the internal ribosome entry site element impairs the growth of foot-and-mouth disease virus in porcine-derived cells. Sun C; Yang D; Gao R; Liang T; Wang H; Zhou G; Yu L J Gen Virol; 2016 Apr; 97(4):901-911. PubMed ID: 26795299 [TBL] [Abstract][Full Text] [Related]
16. Structural analysis of the interaction of the pyrimidine tract-binding protein with the internal ribosomal entry site of encephalomyocarditis virus and foot-and-mouth disease virus RNAs. Kolupaeva VG; Hellen CU; Shatsky IN RNA; 1996 Dec; 2(12):1199-212. PubMed ID: 8972770 [TBL] [Abstract][Full Text] [Related]
17. Candidate RNA structures for domain 3 of the foot-and-mouth-disease virus internal ribosome entry site. Jung S; Schlick T Nucleic Acids Res; 2013 Feb; 41(3):1483-95. PubMed ID: 23275533 [TBL] [Abstract][Full Text] [Related]
18. A novel protein-RNA binding assay: functional interactions of the foot-and-mouth disease virus internal ribosome entry site with cellular proteins. Stassinopoulos IA; Belsham GJ RNA; 2001 Jan; 7(1):114-22. PubMed ID: 11214173 [TBL] [Abstract][Full Text] [Related]
19. Rescue of internal initiation of translation by RNA complementation provides evidence for a distribution of functions between individual IRES domains. Serrano P; Ramajo J; Martínez-Salas E Virology; 2009 May; 388(1):221-9. PubMed ID: 19383564 [TBL] [Abstract][Full Text] [Related]
20. Exploring IRES region accessibility by interference of foot-and-mouth disease virus infectivity. Fajardo T; Rosas MF; Sobrino F; Martinez-Salas E PLoS One; 2012; 7(7):e41382. PubMed ID: 22815996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]