BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 12457775)

  • 1. Calcineurin signaling and neural control of skeletal muscle fiber type and size.
    Schiaffino S; Serrano A
    Trends Pharmacol Sci; 2002 Dec; 23(12):569-75. PubMed ID: 12457775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type.
    Wu H; Naya FJ; McKinsey TA; Mercer B; Shelton JM; Chin ER; Simard AR; Michel RN; Bassel-Duby R; Olson EN; Williams RS
    EMBO J; 2000 May; 19(9):1963-73. PubMed ID: 10790363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type.
    Chin ER; Olson EN; Richardson JA; Yang Q; Humphries C; Shelton JM; Wu H; Zhu W; Bassel-Duby R; Williams RS
    Genes Dev; 1998 Aug; 12(16):2499-509. PubMed ID: 9716403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remodeling muscles with calcineurin.
    Olson EN; Williams RS
    Bioessays; 2000 Jun; 22(6):510-9. PubMed ID: 10842305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle development: electrical control of gene expression.
    Hughes SM
    Curr Biol; 1998 Dec; 8(24):R892-4. PubMed ID: 9843678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matching of calcineurin activity to upstream effectors is critical for skeletal muscle fiber growth.
    Dunn SE; Chin ER; Michel RN
    J Cell Biol; 2000 Oct; 151(3):663-72. PubMed ID: 11062266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of utrophin A mRNA correlates with the oxidative capacity of skeletal muscle fiber types and is regulated by calcineurin/NFAT signaling.
    Chakkalakal JV; Stocksley MA; Harrison MA; Angus LM; Deschenes-Furry J; St-Pierre S; Megeney LA; Chin ER; Michel RN; Jasmin BJ
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7791-6. PubMed ID: 12808150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-dependent gene regulation in myocyte hypertrophy and remodeling.
    Williams RS; Rosenberg P
    Cold Spring Harb Symp Quant Biol; 2002; 67():339-44. PubMed ID: 12858558
    [No Abstract]   [Full Text] [Related]  

  • 9. Regulation of myosin heavy chain expression during rat skeletal muscle development in vitro.
    Torgan CE; Daniels MP
    Mol Biol Cell; 2001 May; 12(5):1499-508. PubMed ID: 11359938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching.
    McCullagh KJ; Calabria E; Pallafacchina G; Ciciliot S; Serrano AL; Argentini C; Kalhovde JM; Lømo T; Schiaffino S
    Proc Natl Acad Sci U S A; 2004 Jul; 101(29):10590-5. PubMed ID: 15247427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway.
    Semsarian C; Wu MJ; Ju YK; Marciniec T; Yeoh T; Allen DG; Harvey RP; Graham RM
    Nature; 1999 Aug; 400(6744):576-81. PubMed ID: 10448861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anabolic steroids activate calcineurin-NFAT signaling and thereby increase myotube size and reduce denervation atrophy.
    Qin W; Pan J; Wu Y; Bauman WA; Cardozo C
    Mol Cell Endocrinol; 2015 Jan; 399():336-45. PubMed ID: 25450864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development.
    Schulz RA; Yutzey KE
    Dev Biol; 2004 Feb; 266(1):1-16. PubMed ID: 14729474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1.
    Musarò A; McCullagh KJ; Naya FJ; Olson EN; Rosenthal N
    Nature; 1999 Aug; 400(6744):581-5. PubMed ID: 10448862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LIM and cysteine-rich domains 1 (LMCD1) regulates skeletal muscle hypertrophy, calcium handling, and force.
    Ferreira DMS; Cheng AJ; Agudelo LZ; Cervenka I; Chaillou T; Correia JC; Porsmyr-Palmertz M; Izadi M; Hansson A; Martínez-Redondo V; Valente-Silva P; Pettersson-Klein AT; Estall JL; Robinson MM; Nair KS; Lanner JT; Ruas JL
    Skelet Muscle; 2019 Oct; 9(1):26. PubMed ID: 31666122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle.
    Liu Y; Shen T; Randall WR; Schneider MF
    J Muscle Res Cell Motil; 2005; 26(1):13-21. PubMed ID: 16096682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of moderate acute exercise on expression of mRNA involved in the calcineurin signaling pathway in human skeletal muscle.
    Hitomi Y; Kizaki T; Katsumura T; Mizuno M; Itoh CE; Esaki K; Fujioka Y; Takemasa T; Haga S; Ohno H
    IUBMB Life; 2003 Jul; 55(7):409-13. PubMed ID: 14584592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcineurin is a potent regulator for skeletal muscle regeneration by association with NFATc1 and GATA-2.
    Sakuma K; Nishikawa J; Nakao R; Watanabe K; Totsuka T; Nakano H; Sano M; Yasuhara M
    Acta Neuropathol; 2003 Mar; 105(3):271-80. PubMed ID: 12557015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity- and calcineurin-independent nuclear shuttling of NFATc1, but not NFATc3, in adult skeletal muscle fibers.
    Shen T; Liu Y; Cseresnyés Z; Hawkins A; Randall WR; Schneider MF
    Mol Biol Cell; 2006 Apr; 17(4):1570-82. PubMed ID: 16436503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice.
    Chakkalakal JV; Harrison MA; Carbonetto S; Chin E; Michel RN; Jasmin BJ
    Hum Mol Genet; 2004 Feb; 13(4):379-88. PubMed ID: 14681302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.