These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12458081)

  • 21. Ionization of a critical adenosine residue in the neurospora Varkud Satellite ribozyme active site.
    Jones FD; Strobel SA
    Biochemistry; 2003 Apr; 42(14):4265-76. PubMed ID: 12680781
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of SLV in SLI substrate recognition by the Neurospora VS ribozyme.
    Bouchard P; Lacroix-Labonté J; Desjardins G; Lampron P; Lisi V; Lemieux S; Major F; Legault P
    RNA; 2008 Apr; 14(4):736-48. PubMed ID: 18314503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The contribution of 2'-hydroxyls to the cleavage activity of the Neurospora VS ribozyme.
    Sood VD; Yekta S; Collins RA
    Nucleic Acids Res; 2002 Mar; 30(5):1132-8. PubMed ID: 11861903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nuclear magnetic resonance structure of the III-IV-V three-way junction from the Varkud satellite ribozyme and identification of magnesium-binding sites using paramagnetic relaxation enhancement.
    Bonneau E; Legault P
    Biochemistry; 2014 Oct; 53(39):6264-75. PubMed ID: 25238589
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nuclear magnetic resonance structure of the Varkud satellite ribozyme stem-loop V RNA and magnesium-ion binding from chemical-shift mapping.
    Campbell DO; Legault P
    Biochemistry; 2005 Mar; 44(11):4157-70. PubMed ID: 15766243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of the Varkud satellite ribozyme.
    Suslov NB; DasGupta S; Huang H; Fuller JR; Lilley DM; Rice PA; Piccirilli JA
    Nat Chem Biol; 2015 Nov; 11(11):840-6. PubMed ID: 26414446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An important role of G638 in the cis-cleavage reaction of the Neurospora VS ribozyme revealed by a novel nucleotide analog incorporation method.
    Jaikaran D; Smith MD; Mehdizadeh R; Olive J; Collins RA
    RNA; 2008 May; 14(5):938-49. PubMed ID: 18356538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The complete VS ribozyme in solution studied by small-angle X-ray scattering.
    Lipfert J; Ouellet J; Norman DG; Doniach S; Lilley DM
    Structure; 2008 Sep; 16(9):1357-67. PubMed ID: 18786398
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The first phytoplasma RNase P RNA provides new insights into the sequence requirements of this ribozyme.
    Wagner M; Fingerhut C; Gross HJ; Schön A
    Nucleic Acids Res; 2001 Jun; 29(12):2661-5. PubMed ID: 11410676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of structural modules in substrate binding by the ribozyme from Bacillus subtilis RNase P.
    Odell L; Huang V; Jakacka M; Pan T
    Nucleic Acids Res; 1998 Aug; 26(16):3717-23. PubMed ID: 9685487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites.
    Mobley EM; Pan T
    Nucleic Acids Res; 1999 Nov; 27(21):4298-304. PubMed ID: 10518624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of magnesium ions and 2'-hydroxyl groups in the VS ribozyme-substrate interaction.
    Tzokov SB; Murray IA; Grasby JA
    J Mol Biol; 2002 Nov; 324(2):215-26. PubMed ID: 12441101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Neurospora Varkud satellite ribozyme.
    Collins RA
    Biochem Soc Trans; 2002 Nov; 30(Pt 6):1122-6. PubMed ID: 12440987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Helix-length compensation studies reveal the adaptability of the VS ribozyme architecture.
    Lacroix-Labonté J; Girard N; Lemieux S; Legault P
    Nucleic Acids Res; 2012 Mar; 40(5):2284-93. PubMed ID: 22086962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A pH controlled conformational switch in the cleavage site of the VS ribozyme substrate RNA.
    Flinders J; Dieckmann T
    J Mol Biol; 2001 May; 308(4):665-79. PubMed ID: 11350168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rational engineering of the Neurospora VS ribozyme to allow substrate recognition via different kissing-loop interactions.
    Lacroix-Labonté J; Girard N; Dagenais P; Legault P
    Nucleic Acids Res; 2016 Aug; 44(14):6924-34. PubMed ID: 27166370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of cobalt hexammine on folding and self-cleavage of the Neurospora VS ribozyme.
    Maguire JL; Collins RA
    J Mol Biol; 2001 May; 309(1):45-56. PubMed ID: 11491300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient, pH-dependent RNA ligation by the VS ribozyme in trans.
    McLeod AC; Lilley DM
    Biochemistry; 2004 Feb; 43(4):1118-25. PubMed ID: 14744158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracellular ribozyme-catalyzed trans-cleavage of RNA monitored by fluorescence resonance energy transfer.
    Vitiello D; Pecchia DB; Burke JM
    RNA; 2000 Apr; 6(4):628-37. PubMed ID: 10786853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NAIM and site-specific functional group modification analysis of RNase P RNA: magnesium dependent structure within the conserved P1-P4 multihelix junction contributes to catalysis.
    Kaye NM; Christian EL; Harris ME
    Biochemistry; 2002 Apr; 41(14):4533-45. PubMed ID: 11926814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.