These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 12458644)

  • 21. Chemical safety of cassava products in regions adopting cassava production and processing--experience from Southern Africa.
    Nyirenda DB; Chiwona-Karltun L; Chitundu M; Haggblade S; Brimer L
    Food Chem Toxicol; 2011 Mar; 49(3):607-12. PubMed ID: 20654674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Food safety: importance of composition for assessing genetically modified cassava (Manihot esculenta Crantz).
    van Rijssen FW; Morris EJ; Eloff JN
    J Agric Food Chem; 2013 Sep; 61(35):8333-9. PubMed ID: 23899040
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyanogenic potential in cassava and its influence on a generalist insect herbivore Cyrtomenus bergi (Hemiptera: Cydnidae).
    Riis L; Bellotti AC; Bonierbale M; O'Brien GM
    J Econ Entomol; 2003 Dec; 96(6):1905-14. PubMed ID: 14977132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Over-expression of hydroxynitrile lyase in transgenic cassava roots accelerates cyanogenesis and food detoxification.
    Siritunga D; Arias-Garzon D; White W; Sayre RT
    Plant Biotechnol J; 2004 Jan; 2(1):37-43. PubMed ID: 17166141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variations in the chemical composition of cassava ( Manihot esculenta Crantz) leaves and roots as affected by genotypic and environmental variation.
    Burns AE; Gleadow RM; Zacarias AM; Cuambe CE; Miller RE; Cavagnaro TR
    J Agric Food Chem; 2012 May; 60(19):4946-56. PubMed ID: 22515684
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The retail market for fresh cassava root tubers in the European Union (EU): the case of Copenhagen, Denmark--a chemical food safety issue?
    Kolind-Hansen L; Brimer L
    J Sci Food Agric; 2010 Jan; 90(2):252-6. PubMed ID: 20355039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fate in humans of dietary intake of cyanogenic glycosides from roots of sweet cassava consumed in Cuba.
    Hernández T; Lundquist P; Oliveira L; Pérez Cristiá R; Rodriguez E; Rosling H
    Nat Toxins; 1995; 3(2):114-7. PubMed ID: 7613736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant tissue analysis as a tool for predicting fertiliser needs for low cyanogenic glucoside levels in cassava roots: An assessment of its possible use.
    Imakumbili MLE; Semu E; Semoka JMR; Abass A; Mkamilo G
    PLoS One; 2020; 15(2):e0228641. PubMed ID: 32053630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochemical changes in micro-fungi fermented cassava flour produced from low- and medium-cyanide variety of cassava tubers.
    Oboh G; Oladunmoye MK
    Nutr Health; 2007; 18(4):355-67. PubMed ID: 18087867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An efficient fermentation method for the degradation of cyanogenic glycosides in flaxseed.
    Wu CF; Xu XM; Huang SH; Deng MC; Feng AJ; Peng J; Yuan JP; Wang JH
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(7):1085-91. PubMed ID: 22530603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of processing cassava peels on the hydrogen cyanide concentration, nutritive value and performance of growing rabbits.
    Olafadehan OA; Olafadehan OO; Obun CO; Yusuf AM; Adewumi MK; Omotugba SK; Daniel NE
    Trop Anim Health Prod; 2012 Feb; 44(2):285-91. PubMed ID: 22086411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current knowledge and future research perspectives on cassava (Manihot esculenta Crantz) chemical defenses: An agroecological view.
    Pinto-Zevallos DM; Pareja M; Ambrogi BG
    Phytochemistry; 2016 Oct; 130():10-21. PubMed ID: 27316676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterisation of the microflora of attiéké, a fermented cassava product, during traditional small-scale preparation.
    Coulin P; Farah Z; Assanvo J; Spillmann H; Puhan Z
    Int J Food Microbiol; 2006 Feb; 106(2):131-6. PubMed ID: 16213052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential effects on the cyanogenic glycoside content of fermenting cassava root pulp by beta-glucosidase and microbial activities.
    Maduagwu EN
    Toxicol Lett; 1983 Mar; 15(4):335-9. PubMed ID: 6404010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi.
    Ogbo FC
    Bioresour Technol; 2010 Jun; 101(11):4120-4. PubMed ID: 20138509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detoxification of cassava leaves by simple traditional methods.
    Maduagwu EN; Umoh IB
    Toxicol Lett; 1982 Feb; 10(2-3):245-8. PubMed ID: 7080092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in cassava toxicity during processing into gari and ijapu--two fermented food products.
    Sokari TG; Karibo PS
    Food Addit Contam; 1992; 9(4):379-84. PubMed ID: 1493886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety.
    Nambisan B
    Food Chem Toxicol; 2011 Mar; 49(3):690-3. PubMed ID: 21074593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cassava-enriched diet is not diabetogenic rather it aggravates diabetes in rats.
    Yessoufou A; Ategbo JM; Girard A; Prost J; Dramane KL; Moutairou K; Hichami A; Khan NA
    Fundam Clin Pharmacol; 2006 Dec; 20(6):579-86. PubMed ID: 17109651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrasound improved ethanol fermentation from cassava chips in cassava-based ethanol plants.
    Nitayavardhana S; Shrestha P; Rasmussen ML; Lamsal BP; van Leeuwen JH; Khanal SK
    Bioresour Technol; 2010 Apr; 101(8):2741-7. PubMed ID: 19939670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.