These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12459474)

  • 1. Interaction of hagfish cathelicidin antimicrobial peptides with model lipid membranes.
    Basañez G; Shinnar AE; Zimmerberg J
    FEBS Lett; 2002 Dec; 532(1-2):115-20. PubMed ID: 12459474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes.
    Paterson DJ; Tassieri M; Reboud J; Wilson R; Cooper JM
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):E8324-E8332. PubMed ID: 28931578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hagfish intestinal antimicrobial peptides are ancient cathelicidins.
    Uzzell T; Stolzenberg ED; Shinnar AE; Zasloff M
    Peptides; 2003 Nov; 24(11):1655-67. PubMed ID: 15019197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of CAP18-derived peptides with membranes made from endotoxins or phospholipids.
    Gutsmann T; Hagge SO; Larrick JW; Seydel U; Wiese A
    Biophys J; 2001 Jun; 80(6):2935-45. PubMed ID: 11371466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane Core-Specific Antimicrobial Action of Cathelicidin LL-37 Peptide Switches Between Pore and Nanofibre Formation.
    Shahmiri M; Enciso M; Adda CG; Smith BJ; Perugini MA; Mechler A
    Sci Rep; 2016 Nov; 6():38184. PubMed ID: 27901075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Coupled transbilayer transport of peptides, lipids, and ions mediated by a peptide-lipid supramolecular complex pore].
    Matsuzaki K; Miyajima K
    Seikagaku; 1997 Feb; 69(2):119-22. PubMed ID: 9086842
    [No Abstract]   [Full Text] [Related]  

  • 8. Interaction of a synthetic antimicrobial peptide with a model bilayer platform mimicking bacterial membranes.
    Niu L; Wohland T; Knoll W; Köper I
    Biointerphases; 2017 Aug; 12(4):04E404. PubMed ID: 28859483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding.
    Ramamoorthy A; Thennarasu S; Tan A; Gottipati K; Sreekumar S; Heyl DL; An FY; Shelburne CE
    Biochemistry; 2006 May; 45(20):6529-40. PubMed ID: 16700563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane insertion and bilayer perturbation by antimicrobial peptide CM15.
    Pistolesi S; Pogni R; Feix JB
    Biophys J; 2007 Sep; 93(5):1651-60. PubMed ID: 17496013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magainins as paradigm for the mode of action of pore forming polypeptides.
    Matsuzaki K
    Biochim Biophys Acta; 1998 Nov; 1376(3):391-400. PubMed ID: 9804997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum.
    Bagheri M; Beyermann M; Dathe M
    Antimicrob Agents Chemother; 2009 Mar; 53(3):1132-41. PubMed ID: 19104020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The C-Terminal VPRTES Tail of LL-37 Influences the Mode of Attachment to a Lipid Bilayer and Antimicrobial Activity.
    de Miguel Catalina A; Forbrig E; Kozuch J; Nehls C; Paulowski L; Gutsmann T; Hildebrandt P; Mroginski MA
    Biochemistry; 2019 May; 58(19):2447-2462. PubMed ID: 31016971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action of Antimicrobial Peptides on Bacterial and Lipid Membranes: A Direct Comparison.
    Faust JE; Yang PY; Huang HW
    Biophys J; 2017 Apr; 112(8):1663-1672. PubMed ID: 28445757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the mechanism of membrane permeabilizing peptides: identification of potent, equilibrium pore-formers.
    Krauson AJ; He J; Wimley WC
    Biochim Biophys Acta; 2012 Jul; 1818(7):1625-32. PubMed ID: 22365969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indolicidin action on membrane permeability: carrier mechanism versus pore formation.
    Rokitskaya TI; Kolodkin NI; Kotova EA; Antonenko YN
    Biochim Biophys Acta; 2011 Jan; 1808(1):91-7. PubMed ID: 20851098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insertion mode of a novel anionic antimicrobial peptide MDpep5 (Val-Glu-Ser-Trp-Val) from Chinese traditional edible larvae of housefly and its effect on surface potential of bacterial membrane.
    Tang YL; Shi YH; Zhao W; Hao G; Le GW
    J Pharm Biomed Anal; 2008 Dec; 48(4):1187-94. PubMed ID: 18926657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A lipocentric view of peptide-induced pores.
    Fuertes G; Giménez D; Esteban-Martín S; Sánchez-Muñoz OL; Salgado J
    Eur Biophys J; 2011 Apr; 40(4):399-415. PubMed ID: 21442255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins.
    Brahma B; Patra MC; Karri S; Chopra M; Mishra P; De BC; Kumar S; Mahanty S; Thakur K; Poluri KM; Datta TK; De S
    PLoS One; 2015; 10(12):e0144741. PubMed ID: 26675301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions.
    Schibli DJ; Epand RF; Vogel HJ; Epand RM
    Biochem Cell Biol; 2002; 80(5):667-77. PubMed ID: 12440706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.