BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 124597)

  • 1. Effect of carbonylcyanide m-chlorophenylhydrazone on the calcium-stimulated ATPase activity of erythrocyteghosts.
    Hayashi H; Plishker GA; Penniston JT
    Biochim Biophys Acta; 1975 Jun; 394(1):144-55. PubMed ID: 124597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concurrent inhibition of the low-affinity Ca2+-stimulated ATPase and MgATP-dependent endocytosis in erythrocyte ghosts by N-naphthylmaleimide and carbonylcyanide-m-chlorophenylhydrazone.
    Jarrett HW; Reid TB; Penniston JT
    Arch Biochem Biophys; 1977 Oct; 183(2):498-510. PubMed ID: 144459
    [No Abstract]   [Full Text] [Related]  

  • 3. Presence of a Na+-stimulated P-type ATPase in the plasma membrane of the alkaliphilic halotolerant cyanobacterium Aphanothece halophytica.
    Wiangnon K; Raksajit W; Incharoensakdi A
    FEMS Microbiol Lett; 2007 May; 270(1):139-45. PubMed ID: 17302934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relative contributions of extracellular and intracellular calcium to secretion from tumor mast cells. Multiple effects of the proton ionophore carbonyl cyanide m-chlorophenylhydrazone.
    Mohr FC; Fewtrell C
    J Biol Chem; 1987 Aug; 262(22):10638-43. PubMed ID: 2440869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolysis of erythrocyte membrane phospholipids by a preparation of phospholipase C from Clostridium Welchii. Deactivation of (Ca-2+, Mg-2+)-ATPase and its reactivation by added lipids.
    Coleman R; Bramley TA
    Biochim Biophys Acta; 1975 Apr; 382(4):565-75. PubMed ID: 123773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of carbonyl cyanide m-chlorophenylhydrazone on steroid transport in membrane vesicles of Pseudomonas testosteroni.
    Culos D; Watanabe M
    J Steroid Biochem; 1983 Aug; 19(2):1127-33. PubMed ID: 6310264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium and magnesium ATPases of the spectrin fraction of human erythrocytes.
    Kirkpatrick FH; Woods GM; La Celle PL; Weed RI
    J Supramol Struct; 1975; 3(5-6):415-25. PubMed ID: 128659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca-2+-stimulated membrane phosphorylation and ATPase activity of the human erythrocyte.
    Katz S; Blostein R
    Biochim Biophys Acta; 1975 May; 389(2):314-24. PubMed ID: 124591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium transport coupled to ATP hydrolysis in reconstituted proteoliposomes of yeast plasma membrane ATPase.
    Villalobo A
    J Biol Chem; 1982 Feb; 257(4):1824-8. PubMed ID: 6120168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular calcium concentrations during metabolic inhibition in the motoneuron cell line NSC-19.
    Hasham MI; Naumann D; Kim SU; Cashman NR; Quamme GA; Krieger C
    Can J Physiol Pharmacol; 1994 Jul; 72(7):728-37. PubMed ID: 7828081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the uncoupler carbonyl cyanide m-chlorophenylhydrazone on K+ transport, ATP level and intracellular pH of Chlorella fusca.
    Tromballa HW
    Biochim Biophys Acta; 1981 Jun; 636(1):98-103. PubMed ID: 7284347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reversible inhibition by carbonyl cyanide m-chlorophenyl hydrazone of epinephrine-stimulated lipolysis in perifused isolated fat cells.
    Huber CT; Duckworth WC; Solomon SS
    Biochim Biophys Acta; 1981 Dec; 666(3):462-7. PubMed ID: 7326256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Structural-functional changes in root cells under the action of carbonylcyanide 3-chlorphenylhydrazone].
    Ponomareva AA; Polygalova OO
    Tsitologiia; 2001; 43(6):561-6. PubMed ID: 11534175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbonyl cyanide m-chlorophenylhydrazone induced calcium signaling and activation of plasma membrane H(+)-ATPase in the yeast Saccharomyces cerevisiae.
    Pereira MB; Tisi R; Fietto LG; Cardoso AS; França MM; Carvalho FM; Trópia MJ; Martegani E; Castro IM; Brandão RL
    FEMS Yeast Res; 2008 Jun; 8(4):622-30. PubMed ID: 18399987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of the primary effect of the uncoupler carbonyl cyanide m-chlorophenylhydrazone on membrane potential and conductance in Riccia fluitans.
    Felle H; Bentrup FW
    Biochim Biophys Acta; 1977 Jan; 464(1):179-87. PubMed ID: 831789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CCCP enhances catecholamine release from the perfused rat adrenal medulla.
    Lim DY; Park HG; Miwa S
    Auton Neurosci; 2006 Jul; 128(1-2):37-47. PubMed ID: 16461015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of intracellular pH as a possible mechanism for killing cells in acidic regions of solid tumors: effects of carbonylcyanide-3-chlorophenylhydrazone.
    Newell KJ; Tannock IF
    Cancer Res; 1989 Aug; 49(16):4477-82. PubMed ID: 2743336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of N-acetylimidazole on human erythrocyte ATPase activity. Evidence for a tyrosyl residue at the ATP binding site of the (Na+ plus K+)-dependent ATPase.
    Masiak SJ; D'angelo G
    Biochim Biophys Acta; 1975 Feb; 382(1):83-91. PubMed ID: 123469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (Ca-2+ + Mg-2+)-Activated ATPase in the plasma membrane mouse liver cells.
    Garnett HM; Kemp RB
    Biochim Biophys Acta; 1975 Apr; 382(4):526-33. PubMed ID: 1125244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-induced conformational changes in the (Mg 2+ + Ca 2+ )-dependent ATPase of red cell membranes.
    Bond GH
    Biochim Biophys Acta; 1972 Nov; 288(2):423-33. PubMed ID: 4263663
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.