BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 12460119)

  • 1. The catalytic domain limits the translocation of protein kinase C alpha in response to increases in Ca2+ and diacylglycerol.
    Raghunath A; Ling M; Larsson C
    Biochem J; 2003 Mar; 370(Pt 3):901-12. PubMed ID: 12460119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The V5 domain of protein kinase C plays a critical role in determining the isoform-specific localization, translocation, and biological function of protein kinase C-delta and -epsilon.
    Wang QJ; Lu G; Schlapkohl WA; Goerke A; Larsson C; Mischak H; Blumberg PM; Mushinski JF
    Mol Cancer Res; 2004 Feb; 2(2):129-40. PubMed ID: 14985469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+-controlled competitive diacylglycerol binding of protein kinase C isoenzymes in living cells.
    Lenz JC; Reusch HP; Albrecht N; Schultz G; Schaefer M
    J Cell Biol; 2002 Oct; 159(2):291-302. PubMed ID: 12391024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of the C1A and C1B domains to the membrane interaction of protein kinase C.
    Giorgione J; Hysell M; Harvey DF; Newton AC
    Biochemistry; 2003 Sep; 42(38):11194-202. PubMed ID: 14503869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individual C1 domains of PKD3 in phorbol ester-induced plasma membrane translocation of PKD3 in intact cells.
    Anderson G; Chen J; Wang QJ
    Cell Signal; 2005 Nov; 17(11):1397-411. PubMed ID: 15927450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective binding of phorbol esters and diacylglycerol by individual C1 domains of the PKD family.
    Chen J; Deng F; Li J; Wang QJ
    Biochem J; 2008 Apr; 411(2):333-42. PubMed ID: 18076381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The catalytic domain of PKC-epsilon, in reciprocal PKC-delta and -epsilon chimeras, is responsible for conferring tumorgenicity to NIH3T3 cells, whereas both regulatory and catalytic domains of PKC-epsilon contribute to in vitro transformation.
    Wang QJ; Acs P; Goodnight J; Blumberg PM; Mischak H; Mushinski JF
    Oncogene; 1998 Jan; 16(1):53-60. PubMed ID: 9467942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The C2 domain of the Ca(2+)-independent protein kinase C Apl II inhibits phorbol ester binding to the C1 domain in a phosphatidic acid-sensitive manner.
    Pepio AM; Sossin WS
    Biochemistry; 1998 Feb; 37(5):1256-63. PubMed ID: 9477951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new mechanism of action of a C2 domain-derived novel PKC inhibitor peptide.
    Farah CA; Sossin WS
    Neurosci Lett; 2011 Oct; 504(3):306-10. PubMed ID: 21982802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase C delta and epsilon mediate positive inotropy in adult ventricular myocytes.
    Kang M; Walker JW
    J Mol Cell Cardiol; 2005 May; 38(5):753-64. PubMed ID: 15850569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of protein kinase C catalytic activity by additional regions within the human protein kinase Calpha-regulatory domain lying outside of the pseudosubstrate sequence.
    Kirwan AF; Bibby AC; Mvilongo T; Riedel H; Burke T; Millis SZ; Parissenti AM
    Biochem J; 2003 Jul; 373(Pt 2):571-81. PubMed ID: 12710889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myofilament anchoring of protein kinase C-epsilon in cardiac myocytes.
    Huang X; Walker JW
    J Cell Sci; 2004 Apr; 117(Pt 10):1971-8. PubMed ID: 15039458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the C2 domain from novel protein kinase Cepsilon. A membrane binding model for Ca(2+)-independent C2 domains.
    Ochoa WF; Garcia-Garcia J; Fita I; Corbalan-Garcia S; Verdaguer N; Gomez-Fernandez JC
    J Mol Biol; 2001 Aug; 311(4):837-49. PubMed ID: 11518534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic exposure to ammonia induces isoform-selective alterations in the intracellular distribution and NMDA receptor-mediated translocation of protein kinase C in cerebellar neurons in culture.
    Giordano G; Sanchez-Perez AM; Burgal M; Montoliu C; Costa LG; Felipo V
    J Neurochem; 2005 Jan; 92(1):143-57. PubMed ID: 15606904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of diacylglycerol-induced membrane targeting and activation of protein kinase Cdelta.
    Stahelin RV; Digman MA; Medkova M; Ananthanarayanan B; Rafter JD; Melowic HR; Cho W
    J Biol Chem; 2004 Jul; 279(28):29501-12. PubMed ID: 15105418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PKC-alpha shows variable patterns of translocation in response to different stimulatory agents.
    Li C; Fultz ME; Wright GL
    Acta Physiol Scand; 2002 Mar; 174(3):237-46. PubMed ID: 11906323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMDA-receptor regulation of muscarinic-receptor stimulated inositol 1,4,5-trisphosphate production and protein kinase C activation in single cerebellar granule neurons.
    Young KW; Garro MA; Challiss RA; Nahorski SR
    J Neurochem; 2004 Jun; 89(6):1537-46. PubMed ID: 15189357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation mechanisms of conventional protein kinase C isoforms are determined by the ligand affinity and conformational flexibility of their C1 domains.
    Ananthanarayanan B; Stahelin RV; Digman MA; Cho W
    J Biol Chem; 2003 Nov; 278(47):46886-94. PubMed ID: 12954613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autophosphorylation suppresses whereas kinase inhibition augments the translocation of protein kinase Calpha in response to diacylglycerol.
    Stensman H; Raghunath A; Larsson C
    J Biol Chem; 2004 Sep; 279(39):40576-83. PubMed ID: 15277524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of PKC alpha activity by C1-C2 domain interactions.
    Slater SJ; Seiz JL; Cook AC; Buzas CJ; Malinowski SA; Kershner JL; Stagliano BA; Stubbs CD
    J Biol Chem; 2002 May; 277(18):15277-85. PubMed ID: 11850425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.