These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 12460443)
41. In vitro antimicrobial activity of sodium hypochlorite and chlorhexidine against selected single-species biofilms. Sena NT; Gomes BP; Vianna ME; Berber VB; Zaia AA; Ferraz CC; Souza-Filho FJ Int Endod J; 2006 Nov; 39(11):878-85. PubMed ID: 17014526 [TBL] [Abstract][Full Text] [Related]
42. Role of sucrose in the fitness of Streptococcus mutans. Kreth J; Zhu L; Merritt J; Shi W; Qi F Oral Microbiol Immunol; 2008 Jun; 23(3):213-9. PubMed ID: 18402607 [TBL] [Abstract][Full Text] [Related]
43. Effect of sodium fluoride, ampicillin, and chlorhexidine on Streptococcus mutans biofilm detachment. Liu J; Ling JQ; Zhang K; Huo LJ; Ning Y Antimicrob Agents Chemother; 2012 Aug; 56(8):4532-5. PubMed ID: 22664966 [TBL] [Abstract][Full Text] [Related]
44. Impact of the broad-spectrum antimicrobial peptide, lacticin 3147, on Streptococcus mutans growing in a biofilm and in human saliva. Dobson A; O'Connor PM; Cotter PD; Ross RP; Hill C J Appl Microbiol; 2011 Dec; 111(6):1515-23. PubMed ID: 21923747 [TBL] [Abstract][Full Text] [Related]
45. Electrical enhancement of chlorhexidine efficacy against the periodontal pathogen Porphyromonas gingivalis within a biofilm. Lasserre JF; Leprince JG; Toma S; Brecx MC New Microbiol; 2015 Oct; 38(4):511-9. PubMed ID: 26571378 [TBL] [Abstract][Full Text] [Related]
46. Development of resistance of mutans streptococci and Porphyromonas gingivalis to chlorhexidine digluconate and amine fluoride/stannous fluoride-containing mouthrinses, in vitro. Kulik EM; Waltimo T; Weiger R; Schweizer I; Lenkeit K; Filipuzzi-Jenny E; Walter C Clin Oral Investig; 2015 Jul; 19(6):1547-53. PubMed ID: 25483124 [TBL] [Abstract][Full Text] [Related]
47. Bactericidal effect of extracts and metabolites of Robinia pseudoacacia L. on Streptococcus mutans and Porphyromonas gingivalis causing dental plaque and periodontal inflammatory diseases. Patra JK; Kim ES; Oh K; Kim HJ; Dhakal R; Kim Y; Baek KH Molecules; 2015 Apr; 20(4):6128-39. PubMed ID: 25856062 [TBL] [Abstract][Full Text] [Related]
48. Development of an in vitro periodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules. Millhouse E; Jose A; Sherry L; Lappin DF; Patel N; Middleton AM; Pratten J; Culshaw S; Ramage G BMC Oral Health; 2014 Jun; 14():80. PubMed ID: 24972711 [TBL] [Abstract][Full Text] [Related]
49. Treatment of Streptococcus mutans biofilms with a nonthermal atmospheric plasma. Sladek RE; Filoche SK; Sissons CH; Stoffels E Lett Appl Microbiol; 2007 Sep; 45(3):318-23. PubMed ID: 17718846 [TBL] [Abstract][Full Text] [Related]
50. Effects of Nidus Vespae extract and chemical fractions on glucosyltransferases, adherence and biofilm formation of Streptococcus mutans. Xiao J; Zuo Y; Liu Y; Li J; Hao Y; Zhou X Arch Oral Biol; 2007 Sep; 52(9):869-75. PubMed ID: 17382894 [TBL] [Abstract][Full Text] [Related]
51. No evidence of triclosan-resistant bacteria following long-term use of triclosan-containing toothpaste. Cullinan MP; Bird PS; Heng NC; West MJ; Seymour GJ J Periodontal Res; 2014 Apr; 49(2):220-5. PubMed ID: 23668824 [TBL] [Abstract][Full Text] [Related]
52. Inhibitory effect of methyl gallate and gallic acid on oral bacteria. Kang MS; Oh JS; Kang IC; Hong SJ; Choi CH J Microbiol; 2008 Dec; 46(6):744-50. PubMed ID: 19107406 [TBL] [Abstract][Full Text] [Related]
53. Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative. Chen L; Ren Z; Zhou X; Zeng J; Zou J; Li Y Appl Microbiol Biotechnol; 2016 Jan; 100(2):857-67. PubMed ID: 26526453 [TBL] [Abstract][Full Text] [Related]
54. A tooth-binding antimicrobial peptide to prevent the formation of dental biofilm. Zhang LY; Fang ZH; Li QL; Cao CY J Mater Sci Mater Med; 2019 Mar; 30(4):45. PubMed ID: 30929087 [TBL] [Abstract][Full Text] [Related]
55. The effects of histatin-derived basic antimicrobial peptides on oral biofilms. Helmerhorst EJ; Hodgson R; van 't Hof W; Veerman EC; Allison C; Nieuw Amerongen AV J Dent Res; 1999 Jun; 78(6):1245-50. PubMed ID: 10371248 [TBL] [Abstract][Full Text] [Related]
56. In vitro study of biofilm formation and effectiveness of antimicrobial treatment on various dental material surfaces. Li L; Finnegan MB; Özkan S; Kim Y; Lillehoj PB; Ho CM; Lux R; Mito R; Loewy Z; Shi W Mol Oral Microbiol; 2010 Dec; 25(6):384-90. PubMed ID: 21040512 [TBL] [Abstract][Full Text] [Related]
57. Impact of farnesol and Corsodyl Černáková L; Jordao L; Bujdáková H Oral Dis; 2018 Sep; 24(6):1126-1131. PubMed ID: 29667274 [TBL] [Abstract][Full Text] [Related]
58. In vitro activity of xanthorrhizol against Streptococcus mutans biofilms. Rukayadi Y; Hwang JK Lett Appl Microbiol; 2006 Apr; 42(4):400-4. PubMed ID: 16599995 [TBL] [Abstract][Full Text] [Related]
59. A simple approach to examine early oral microbial biofilm formation and the effects of treatments. Sreenivasan PK; Mattai J; Nabi N; Xu T; Gaffar A Oral Microbiol Immunol; 2004 Oct; 19(5):297-302. PubMed ID: 15327641 [TBL] [Abstract][Full Text] [Related]
60. Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. Wei GX; Campagna AN; Bobek LA J Antimicrob Chemother; 2006 Jun; 57(6):1100-9. PubMed ID: 16595638 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]