These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 12460558)

  • 1. Tumor necrosis factor alpha increases neuronal vulnerability to excitotoxic necrosis by inducing expression of the AMPA-glutamate receptor subunit GluR1 via an acid sphingomyelinase- and NF-kappaB-dependent mechanism.
    Yu Z; Cheng G; Wen X; Wu GD; Lee WT; Pleasure D
    Neurobiol Dis; 2002 Oct; 11(1):199-213. PubMed ID: 12460558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of the p50 subunit of nuclear factor-kappaB increases the vulnerability of hippocampal neurons to excitotoxic injury.
    Yu Z; Zhou D; Bruce-Keller AJ; Kindy MS; Mattson MP
    J Neurosci; 1999 Oct; 19(20):8856-65. PubMed ID: 10516305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor necrosis factor alpha activates NF-kappaB in acid sphingomyelinase-deficient mouse embryonic fibroblasts.
    Zumbansen M; Stoffel W
    J Biol Chem; 1997 Apr; 272(16):10904-9. PubMed ID: 9099747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transcription factor NF-kappaB mediates increases in calcium currents and decreases in NMDA- and AMPA/kainate-induced currents induced by tumor necrosis factor-alpha in hippocampal neurons.
    Furukawa K; Mattson MP
    J Neurochem; 1998 May; 70(5):1876-86. PubMed ID: 9572271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways.
    Yang L; Lindholm K; Konishi Y; Li R; Shen Y
    J Neurosci; 2002 Apr; 22(8):3025-32. PubMed ID: 11943805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TNF-alpha-mediates neuroprotection against glutamate-induced excitotoxicity via NF-kappaB-dependent up-regulation of K2.2 channels.
    Dolga AM; Granic I; Blank T; Knaus HG; Spiess J; Luiten PG; Eisel UL; Nijholt IM
    J Neurochem; 2008 Nov; 107(4):1158-67. PubMed ID: 18823372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor necrosis factor-α elevates neurite outgrowth through an NF-κB-dependent pathway in cultured adult sensory neurons: Diminished expression in diabetes may contribute to sensory neuropathy.
    Saleh A; Smith DR; Balakrishnan S; Dunn L; Martens C; Tweed CW; Fernyhough P
    Brain Res; 2011 Nov; 1423():87-95. PubMed ID: 21985959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CREB and NF-kappaB transcription factors regulate sensitivity to excitotoxic and oxidative stress induced neuronal cell death.
    Zou J; Crews F
    Cell Mol Neurobiol; 2006; 26(4-6):385-405. PubMed ID: 16633891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of BDNF, ADNF9, and TNFalpha on levels of NMDA receptor subunits, calcium homeostasis, and neuronal vulnerability to excitotoxicity.
    Glazner GW; Mattson MP
    Exp Neurol; 2000 Feb; 161(2):442-52. PubMed ID: 10686066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amyloid-beta peptide enhances tumor necrosis factor-alpha-induced iNOS through neutral sphingomyelinase/ceramide pathway in oligodendrocytes.
    Zeng C; Lee JT; Chen H; Chen S; Hsu CY; Xu J
    J Neurochem; 2005 Aug; 94(3):703-12. PubMed ID: 16033420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of tumour necrosis factor-alpha (TNFalpha)-induced NF-kappaB p52 converts the metabolic effects of microglial-derived TNFalpha on mouse cerebellar neurones to neurotoxicity.
    Nicholas RS; Compston A; Brown DR
    J Neurochem; 2001 Mar; 76(5):1431-8. PubMed ID: 11238728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct roles of NF-kappaB p50 in the regulation of acetaminophen-induced inflammatory mediator production and hepatotoxicity.
    Dambach DM; Durham SK; Laskin JD; Laskin DL
    Toxicol Appl Pharmacol; 2006 Mar; 211(2):157-65. PubMed ID: 16081117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration.
    Mattson MP; Goodman Y; Luo H; Fu W; Furukawa K
    J Neurosci Res; 1997 Sep; 49(6):681-97. PubMed ID: 9335256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of NF-kappaB1 (p50) targeted gene disruption on ionizing radiation-induced NF-kappaB activation and TNFalpha, IL-1alpha, IL-1beta and IL-6 mRNA expression in vivo.
    Zhou D; Yu T; Chen G; Brown SA; Yu Z; Mattson MP; Thompson JS
    Int J Radiat Biol; 2001 Jul; 77(7):763-72. PubMed ID: 11454276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear factor-(kappa)B modulates the p53 response in neurons exposed to DNA damage.
    Aleyasin H; Cregan SP; Iyirhiaro G; O'Hare MJ; Callaghan SM; Slack RS; Park DS
    J Neurosci; 2004 Mar; 24(12):2963-73. PubMed ID: 15044535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling.
    Widera D; Mikenberg I; Elvers M; Kaltschmidt C; Kaltschmidt B
    BMC Neurosci; 2006 Sep; 7():64. PubMed ID: 16987412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid sphingomyelinase-derived ceramide is not required for inflammatory cytokine signalling in murine macrophages.
    Manthey CL; Schuchman EH
    Cytokine; 1998 Sep; 10(9):654-61. PubMed ID: 9770326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Honokiol inhibits TNF-alpha-stimulated NF-kappaB activation and NF-kappaB-regulated gene expression through suppression of IKK activation.
    Tse AK; Wan CK; Shen XL; Yang M; Fong WF
    Biochem Pharmacol; 2005 Nov; 70(10):1443-57. PubMed ID: 16181613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroprotective role for the p50 subunit of NF-kappaB in an experimental model of Huntington's disease.
    Yu Z; Zhou D; Cheng G; Mattson MP
    J Mol Neurosci; 2000 Aug; 15(1):31-44. PubMed ID: 11211235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High abundance of GluR1 mRNA and reduced Q/R editing of GluR2 mRNA in individual NADPH-diaphorase neurons.
    Kim DY; Kim SH; Choi HB; Min C; Gwag BJ
    Mol Cell Neurosci; 2001 Jun; 17(6):1025-33. PubMed ID: 11414791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.