BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 12460583)

  • 41. The 1.5 A crystal structure of a prokaryote serpin: controlling conformational change in a heated environment.
    Irving JA; Cabrita LD; Rossjohn J; Pike RN; Bottomley SP; Whisstock JC
    Structure; 2003 Apr; 11(4):387-97. PubMed ID: 12679017
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conformational properties of the disease-causing Z variant of α1-antitrypsin revealed by theory and experiment.
    Kass I; Knaupp AS; Bottomley SP; Buckle AM
    Biophys J; 2012 Jun; 102(12):2856-65. PubMed ID: 22735536
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation and characterization of latent alpha 1-antitrypsin.
    Lomas DA; Elliott PR; Chang WS; Wardell MR; Carrell RW
    J Biol Chem; 1995 Mar; 270(10):5282-8. PubMed ID: 7890640
    [TBL] [Abstract][Full Text] [Related]  

  • 44. alpha 1-Antitrypsin Mmalton (Phe52-deleted) forms loop-sheet polymers in vivo. Evidence for the C sheet mechanism of polymerization.
    Lomas DA; Elliott PR; Sidhar SK; Foreman RC; Finch JT; Cox DW; Whisstock JC; Carrell RW
    J Biol Chem; 1995 Jul; 270(28):16864-70. PubMed ID: 7622502
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The pH dependence of serpin-proteinase complex dissociation reveals a mechanism of complex stabilization involving inactive and active conformational states of the proteinase which are perturbable by calcium.
    Calugaru SV; Swanson R; Olson ST
    J Biol Chem; 2001 Aug; 276(35):32446-55. PubMed ID: 11404362
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fluorescence-detected polymerization kinetics of human alpha 1-antitrypsin.
    Koloczek H; Guz A; Kaszycki P
    J Protein Chem; 1996 Jul; 15(5):447-54. PubMed ID: 8895089
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neuroserpin Portland (Ser52Arg) is trapped as an inactive intermediate that rapidly forms polymers: implications for the epilepsy seen in the dementia FENIB.
    Belorgey D; Sharp LK; Crowther DC; Onda M; Johansson J; Lomas DA
    Eur J Biochem; 2004 Aug; 271(16):3360-7. PubMed ID: 15291813
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preventing serpin aggregation: the molecular mechanism of citrate action upon antitrypsin unfolding.
    Pearce MC; Morton CJ; Feil SC; Hansen G; Adams JJ; Parker MW; Bottomley SP
    Protein Sci; 2008 Dec; 17(12):2127-33. PubMed ID: 18780818
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mapping the serpin-proteinase complex using single cysteine variants of alpha1-proteinase inhibitor Pittsburgh.
    Stratikos E; Gettins PG
    J Biol Chem; 1998 Jun; 273(25):15582-9. PubMed ID: 9624149
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The spontaneous polymerization of plasminogen activator inhibitor type-2 and Z-antitrypsin are due to different molecular aberrations.
    Wilczynska M; Lobov S; Ny T
    FEBS Lett; 2003 Feb; 537(1-3):11-6. PubMed ID: 12606023
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dimers initiate and propagate serine protease inhibitor polymerisation.
    Zhou A; Carrell RW
    J Mol Biol; 2008 Jan; 375(1):36-42. PubMed ID: 18005992
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of strand 1 of the C beta-sheet in the structure and function of alpha(1)-antitrypsin.
    Bottomley SP; Lawrenson ID; Tew D; Dai W; Whisstock JC; Pike RN
    Protein Sci; 2001 Dec; 10(12):2518-24. PubMed ID: 11714919
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Serpin alpha 1proteinase inhibitor probed by intrinsic tryptophan fluorescence spectroscopy.
    Koloczek H; Banbula A; Salvesen GS; Potempa J
    Protein Sci; 1996 Nov; 5(11):2226-35. PubMed ID: 8931141
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Probing the unfolding pathway of alpha1-antitrypsin.
    James EL; Whisstock JC; Gore MG; Bottomley SP
    J Biol Chem; 1999 Apr; 274(14):9482-8. PubMed ID: 10092631
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pathogenic alpha 1-antitrypsin polymers are formed by reactive loop-beta-sheet A linkage.
    Sivasothy P; Dafforn TR; Gettins PG; Lomas DA
    J Biol Chem; 2000 Oct; 275(43):33663-8. PubMed ID: 10924508
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Retarded protein folding of deficient human alpha 1-antitrypsin D256V and L41P variants.
    Jung CH; Na YR; Im H
    Protein Sci; 2004 Mar; 13(3):694-702. PubMed ID: 14767073
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of glycosylation on the folding and stability of human, recombinant and cleaved alpha 1-antitrypsin.
    Powell LM; Pain RH
    J Mol Biol; 1992 Mar; 224(1):241-52. PubMed ID: 1548702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Formation of a noncovalent serpin-proteinase complex involves no conformational change in the serpin. Use of 1H-15N HSQC NMR as a sensitive nonperturbing monitor of conformation.
    Peterson FC; Gordon NC; Gettins PG
    Biochemistry; 2000 Oct; 39(39):11884-92. PubMed ID: 11009600
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Topography of a 2.0 A structure of alpha1-antitrypsin reveals targets for rational drug design to prevent conformational disease.
    Elliott PR; Pei XY; Dafforn TR; Lomas DA
    Protein Sci; 2000 Jul; 9(7):1274-81. PubMed ID: 10933492
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetic intermediates en route to the final serpin-protease complex: studies of complexes of α1-protease inhibitor with trypsin.
    Maddur AA; Swanson R; Izaguirre G; Gettins PG; Olson ST
    J Biol Chem; 2013 Nov; 288(44):32020-35. PubMed ID: 24047901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.