BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12460666)

  • 21. Opening of ATP-sensitive potassium channels causes generation of free radicals in vascular smooth muscle cells.
    Krenz M; Oldenburg O; Wimpee H; Cohen MV; Garlid KD; Critz SD; Downey JM; Benoit JN
    Basic Res Cardiol; 2002 Sep; 97(5):365-73. PubMed ID: 12200636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial K(ATP) channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation.
    Carroll R; Gant VA; Yellon DM
    Cardiovasc Res; 2001 Sep; 51(4):691-700. PubMed ID: 11530102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of K(ATP) channels in intact mammalian skeletal muscle fibres.
    Barrett-Jolley R; McPherson GA
    Br J Pharmacol; 1998 Mar; 123(6):1103-10. PubMed ID: 9559893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidences for an ATP-sensitive potassium channel (KATP) in muscle and fat body mitochondria of insect.
    Slocinska M; Lubawy J; Jarmuszkiewicz W; Rosinski G
    J Insect Physiol; 2013 Nov; 59(11):1125-32. PubMed ID: 23973818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation.
    Brennan JP; Southworth R; Medina RA; Davidson SM; Duchen MR; Shattock MJ
    Cardiovasc Res; 2006 Nov; 72(2):313-21. PubMed ID: 16950237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antiapoptotic effect of nicorandil mediated by mitochondrial atp-sensitive potassium channels in cultured cardiac myocytes.
    Akao M; Teshima Y; Marbán E
    J Am Coll Cardiol; 2002 Aug; 40(4):803-10. PubMed ID: 12204514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATP-Sensitive potassium channels modulate glucose transport in cultured human skeletal muscle cells.
    Wasada T; Yano T; Ohta M; Yui N; Iwamoto Y
    Endocr J; 2001 Jun; 48(3):369-75. PubMed ID: 11523909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pharmacological and physiological stimuli do not promote Ca(2+)-sensitive K+ channel activity in isolated heart mitochondria.
    Cancherini DV; Queliconi BB; Kowaltowski AJ
    Cardiovasc Res; 2007 Mar; 73(4):720-8. PubMed ID: 17208207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial ATP-sensitive potassium channel: a novel site for neuroprotection.
    Yamauchi T; Kashii S; Yasuyoshi H; Zhang S; Honda Y; Akaike A
    Invest Ophthalmol Vis Sci; 2003 Jun; 44(6):2750-6. PubMed ID: 12766083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Matrix volume measurements challenge the existence of diazoxide/glibencamide-sensitive KATP channels in rat mitochondria.
    Das M; Parker JE; Halestrap AP
    J Physiol; 2003 Mar; 547(Pt 3):893-902. PubMed ID: 12562892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of the subunit composition and the pharmacology of the mitochondrial ATP-dependent K+ channel in the brain.
    Lacza Z; Snipes JA; Kis B; Szabó C; Grover G; Busija DW
    Brain Res; 2003 Dec; 994(1):27-36. PubMed ID: 14642445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Testosterone induces cytoprotection by activating ATP-sensitive K+ channels in the cardiac mitochondrial inner membrane.
    Er F; Michels G; Gassanov N; Rivero F; Hoppe UC
    Circulation; 2004 Nov; 110(19):3100-7. PubMed ID: 15520315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nicorandil prevents oxidative stress-induced apoptosis in neurons by activating mitochondrial ATP-sensitive potassium channels.
    Teshima Y; Akao M; Baumgartner WA; Marbán E
    Brain Res; 2003 Nov; 990(1-2):45-50. PubMed ID: 14568328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nicorandil opens mitochondrial K(ATP) channels not only directly but also through a NO-PKG-dependent pathway.
    Kuno A; Critz SD; Cohen MV; Downey JM
    Basic Res Cardiol; 2007 Jan; 102(1):73-9. PubMed ID: 16900442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effect of diazoxide on the AS-30D rat ascites hepatoma cells treated by Cd2+].
    Beliaeva EA
    Zh Evol Biokhim Fiziol; 2013; 49(5):340-7. PubMed ID: 25434189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ATP-sensitive K+ channels of skeletal muscle fibers from young adult and aged rats: possible involvement of thiol-dependent redox mechanisms in the age-related modifications of their biophysical and pharmacological properties.
    Tricarico D; Camerino DC
    Mol Pharmacol; 1994 Oct; 46(4):754-61. PubMed ID: 7969056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pharmacological comparison of native mitochondrial K(ATP) channels with molecularly defined surface K(ATP) channels.
    Liu Y; Ren G; O'Rourke B; Marbán E; Seharaseyon J
    Mol Pharmacol; 2001 Feb; 59(2):225-30. PubMed ID: 11160857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria.
    Grimmsmann T; Rustenbeck I
    Br J Pharmacol; 1998 Mar; 123(5):781-8. PubMed ID: 9535004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial K(ATP) channel as an end effector of cardioprotection during late preconditioning: triggering role of nitric oxide.
    Wang Y; Kudo M; Xu M; Ayub A; Ashraf M
    J Mol Cell Cardiol; 2001 Nov; 33(11):2037-46. PubMed ID: 11708847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioenergetic and volume regulatory effects of mitoKATP channel modulators protect against hypoxia-reoxygenation-induced mitochondrial dysfunction.
    Onukwufor JO; Stevens D; Kamunde C
    J Exp Biol; 2016 Sep; 219(Pt 17):2743-51. PubMed ID: 27358470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.