BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 12460667)

  • 21. Kinetics of ubiquinone reduction by the resolved succinate: ubiquinone reductase.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 1982 Dec; 682(3):491-5. PubMed ID: 7150582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mode of inhibitory action of Deltalac-acetogenins, a new class of inhibitors of bovine heart mitochondrial complex I.
    Murai M; Ichimaru N; Abe M; Nishioka T; Miyoshi H
    Biochemistry; 2006 Aug; 45(32):9778-87. PubMed ID: 16893179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase. Evidence for stoicheiometric association.
    Ragan CI; Heron C
    Biochem J; 1978 Sep; 174(3):783-90. PubMed ID: 215122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coenzyme Q deficiency in mitochondria: kinetic saturation versus physical saturation.
    Lenaz G; Parenti Castelli G; Fato ; D'Aurelio M; Bovina C; Formiggini G; Marchetti M; Estornell E; Rauchova H
    Mol Aspects Med; 1997; 18 Suppl():S25-31. PubMed ID: 9266503
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New evidence for the multiplicity of ubiquinone- and inhibitor-binding sites in the mitochondrial complex I.
    Tormo JR; Estornell E
    Arch Biochem Biophys; 2000 Sep; 381(2):241-6. PubMed ID: 11032411
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the ubiquinone reduction site of mitochondrial complex I using bulky synthetic ubiquinones.
    Ohshima M; Miyoshi H; Sakamoto K; Takegami K; Iwata J; Kuwabara K; Iwamura H; Yagi T
    Biochemistry; 1998 May; 37(18):6436-45. PubMed ID: 9572861
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial ubiquinol oxidation is necessary for tumour growth.
    Martínez-Reyes I; Cardona LR; Kong H; Vasan K; McElroy GS; Werner M; Kihshen H; Reczek CR; Weinberg SE; Gao P; Steinert EM; Piseaux R; Budinger GRS; Chandel NS
    Nature; 2020 Sep; 585(7824):288-292. PubMed ID: 32641834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ubisemiquinone radicals from the cytochrome b-c1 complex of the mitochondrial electron transport chain--demonstration of QP-S radical formation.
    Wei Y; Scholes CP; King TE
    Biochem Biophys Res Commun; 1981 Apr; 99(4):1411-9. PubMed ID: 6266422
    [No Abstract]   [Full Text] [Related]  

  • 29. Studies on the succinate dehydrogenating system. Isolation and properties of the mitochondrial succinate-ubiquinone reductase.
    Tushurashvili PR; Gavrikova EV; Ledenev AN; Vinogradov AD
    Biochim Biophys Acta; 1985 Sep; 809(2):145-59. PubMed ID: 2994719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The interaction of arylazido ubiquinone derivative with mitochondrial ubiquinol-cytochrome c reductase.
    Yu L; Yu CA
    J Biol Chem; 1982 Sep; 257(17):10215-21. PubMed ID: 6286644
    [No Abstract]   [Full Text] [Related]  

  • 31. Interaction of ubiquinone and vitamin K3 with mitochondrial succinate-ubiquinone oxidoreductase.
    Kotlyar AB; Gutman M; Ackrell BA
    Biochem Biophys Res Commun; 1992 Aug; 186(3):1656-62. PubMed ID: 1510689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of nitric oxide on electron transport complexes.
    Welter R; Yu L; Yu CA
    Arch Biochem Biophys; 1996 Jul; 331(1):9-14. PubMed ID: 8660677
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of the inhibitory action of natural rotenone and its stereoisomers with various NADH-ubiquinone reductases.
    Ueno H; Miyoshi H; Ebisui K; Iwamura H
    Eur J Biochem; 1994 Oct; 225(1):411-7. PubMed ID: 7925463
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and inhibitory activity of ubiquinone-acetogenin hybrid inhibitor with bovine mitochondrial complex I.
    Yabunaka H; Abe M; Kenmochi A; Hamada T; Nishioka T; Miyoshi H
    Bioorg Med Chem Lett; 2003 Jul; 13(14):2385-8. PubMed ID: 12824040
    [TBL] [Abstract][Full Text] [Related]  

  • 35. H+/2e- stoichiometry of the nadh:ubiquinone reductase reaction catalyzed by submitochondrial particles.
    Galkin AS; Grivennikova VG; Vinogradov AD
    Biochemistry (Mosc); 2001 Apr; 66(4):435-43. PubMed ID: 11403652
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acridones and quinolones as inhibitors of ubiquinone functions in the mitochondrial respiratory chain.
    Oettmeier W; Masson K; Soll M; Reil E
    Biochem Soc Trans; 1994 Feb; 22(1):213-6. PubMed ID: 8206232
    [No Abstract]   [Full Text] [Related]  

  • 37. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether.
    Suzuki H; Wakai M; Ozawa T
    Biochem Int; 1986 Aug; 13(2):351-7. PubMed ID: 3094534
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD(P)H-induced lipid peroxidation.
    Glinn MA; Lee CP; Ernster L
    Biochim Biophys Acta; 1997 Jan; 1318(1-2):246-54. PubMed ID: 9030267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ubisemiquinones as obligatory intermediates in the electron transfer from NADH to ubiquinone.
    De Jong AM; Albracht SP
    Eur J Biochem; 1994 Jun; 222(3):975-82. PubMed ID: 8026508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Q metabolites and related compounds on mitochondrial succinate and NADH oxidase systems.
    Okamoto K; Kawada M; Watanabe M; Kobayashi S; Imada I; Morimoto H
    Biochim Biophys Acta; 1982 Oct; 682(1):145-51. PubMed ID: 7138851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.