These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 12461628)

  • 1. Converging evidence for a simplified biophysical model of synaptic plasticity.
    Shouval HZ; Castellani GC; Blais BS; Yeung LC; Cooper LN
    Biol Cybern; 2002 Dec; 87(5-6):383-91. PubMed ID: 12461628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of AMPA receptors and synaptic plasticity.
    Santos SD; Carvalho AL; Caldeira MV; Duarte CB
    Neuroscience; 2009 Jan; 158(1):105-25. PubMed ID: 18424006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Posttranslational modifications and receptor-associated proteins in AMPA receptor trafficking and synaptic plasticity.
    Jiang J; Suppiramaniam V; Wooten MW
    Neurosignals; 2006-2007; 15(5):266-82. PubMed ID: 17622793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadherins and synaptic plasticity.
    Tai CY; Kim SA; Schuman EM
    Curr Opin Cell Biol; 2008 Oct; 20(5):567-75. PubMed ID: 18602471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of AMPA receptor endocytosis in synaptic plasticity.
    Carroll RC; Beattie EC; von Zastrow M; Malenka RC
    Nat Rev Neurosci; 2001 May; 2(5):315-24. PubMed ID: 11331915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Making sense of AMPA receptor trafficking by modeling molecular mechanisms of synaptic plasticity.
    Langemann D; Pellerin L; Peters A
    Brain Res; 2008 May; 1207():60-72. PubMed ID: 18377876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spike-timing dependent synaptic plasticity: a phenomenological framework.
    Kistler WM
    Biol Cybern; 2002 Dec; 87(5-6):416-27. PubMed ID: 12461631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic modifications depend on synapse location and activity: a biophysical model of STDP.
    Saudargiene A; Porr B; Wörgötter F
    Biosystems; 2005; 79(1-3):3-10. PubMed ID: 15649584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model.
    Saudargiene A; Porr B; Wörgötter F
    Neural Comput; 2004 Mar; 16(3):595-625. PubMed ID: 15006093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysical model of synaptic plasticity dynamics.
    Abarbanel HD; Gibb L; Huerta R; Rabinovich MI
    Biol Cybern; 2003 Sep; 89(3):214-26. PubMed ID: 14504940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal specificity of synaptic plasticity: cellular rules and mechanisms.
    Bi GQ
    Biol Cybern; 2002 Dec; 87(5-6):319-32. PubMed ID: 12461623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transiently higher release probability during critical period at thalamocortical synapses in the mouse barrel cortex: relevance to differential short-term plasticity of AMPA and NMDA EPSCs and possible involvement of silent synapses.
    Yanagisawa T; Tsumoto T; Kimura F
    Eur J Neurosci; 2004 Dec; 20(11):3006-18. PubMed ID: 15579155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synapse development and plasticity: roles of ephrin/Eph receptor signaling.
    Lai KO; Ip NY
    Curr Opin Neurobiol; 2009 Jun; 19(3):275-83. PubMed ID: 19497733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of D1 dopamine receptors increases surface expression of AMPA receptors and facilitates their synaptic incorporation in cultured hippocampal neurons.
    Gao C; Sun X; Wolf ME
    J Neurochem; 2006 Sep; 98(5):1664-77. PubMed ID: 16800848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model synapse that incorporates the properties of short- and long-term synaptic plasticity.
    Sargsyan AR; Melkonyan AA; Papatheodoropoulos C; Mkrtchian HH; Kostopoulos GK
    Neural Netw; 2003 Oct; 16(8):1161-77. PubMed ID: 13678620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biophysical basis for the inter-spike interaction of spike-timing-dependent plasticity.
    Shah NT; Yeung LC; Cooper LN; Cai Y; Shouval HZ
    Biol Cybern; 2006 Aug; 95(2):113-21. PubMed ID: 16691393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity-dependent changes in metabotropic glutamate receptor expression at excitatory hippocampal synapses.
    Cheyne JE; Montgomery JM
    Mol Cell Neurosci; 2008 Mar; 37(3):432-9. PubMed ID: 18191411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate receptor plasticity at excitatory synapses in the brain.
    Genoux D; Montgomery JM
    Clin Exp Pharmacol Physiol; 2007 Oct; 34(10):1058-63. PubMed ID: 17714094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neuroeconomic theory of bidirectional synaptic plasticity and addiction.
    Takahashi T
    Med Hypotheses; 2010 Oct; 75(4):356-8. PubMed ID: 20395061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning.
    Pfister JP; Toyoizumi T; Barber D; Gerstner W
    Neural Comput; 2006 Jun; 18(6):1318-48. PubMed ID: 16764506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.