These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 12461628)
21. Bidirectional redistribution of AMPA but not NMDA receptors after perforant path simulation in the adult rat hippocampus in vivo. Moga DE; Shapiro ML; Morrison JH Hippocampus; 2006; 16(11):990-1003. PubMed ID: 17039486 [TBL] [Abstract][Full Text] [Related]
22. Experience-dependent changes in NMDA receptor composition at mature central synapses. Kopp C; Longordo F; Lüthi A Neuropharmacology; 2007 Jul; 53(1):1-9. PubMed ID: 17499817 [TBL] [Abstract][Full Text] [Related]
23. Reinforcement learning, spike-time-dependent plasticity, and the BCM rule. Baras D; Meir R Neural Comput; 2007 Aug; 19(8):2245-79. PubMed ID: 17571943 [TBL] [Abstract][Full Text] [Related]
25. Creation of AMPA-silent synapses in the neonatal hippocampus. Xiao MY; Wasling P; Hanse E; Gustafsson B Nat Neurosci; 2004 Mar; 7(3):236-43. PubMed ID: 14966524 [TBL] [Abstract][Full Text] [Related]
26. Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Brader JM; Senn W; Fusi S Neural Comput; 2007 Nov; 19(11):2881-912. PubMed ID: 17883345 [TBL] [Abstract][Full Text] [Related]
27. A model of bidirectional synaptic plasticity: from signaling network to channel conductance. Castellani GC; Quinlan EM; Bersani F; Cooper LN; Shouval HZ Learn Mem; 2005; 12(4):423-32. PubMed ID: 16027175 [TBL] [Abstract][Full Text] [Related]
28. Mechanisms involved in activity-dependent synapse formation in mammalian central nervous system cell cultures. Nelson PG; Fields RD; Yu C; Neale EA J Neurobiol; 1990 Jan; 21(1):138-56. PubMed ID: 2319238 [TBL] [Abstract][Full Text] [Related]
29. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses. Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483 [TBL] [Abstract][Full Text] [Related]
30. Synaptic and temporal ensemble interpretation of spike-timing-dependent plasticity. Appleby PA; Elliott T Neural Comput; 2005 Nov; 17(11):2316-36. PubMed ID: 16156931 [TBL] [Abstract][Full Text] [Related]
31. Electrophysiology and plasticity in isolated postsynaptic densities. Wyneken U; Marengo JJ; Orrego F Brain Res Brain Res Rev; 2004 Dec; 47(1-3):54-70. PubMed ID: 15572163 [TBL] [Abstract][Full Text] [Related]
32. AMPA receptor trafficking: a road map for synaptic plasticity. Esteban JA Mol Interv; 2003 Oct; 3(7):375-85. PubMed ID: 14993459 [TBL] [Abstract][Full Text] [Related]
33. Computational consequences of experimentally derived spike-time and weight dependent plasticity rules. Standage D; Jalil S; Trappenberg T Biol Cybern; 2007 Jun; 96(6):615-23. PubMed ID: 17468882 [TBL] [Abstract][Full Text] [Related]
34. ATP hydrolysis is required for the rapid regulation of AMPA receptors during basal synaptic transmission and long-term synaptic plasticity. Lim W; Isaac JT Neuropharmacology; 2005 Jun; 48(7):949-55. PubMed ID: 15857621 [TBL] [Abstract][Full Text] [Related]
35. Calcium time course as a signal for spike-timing-dependent plasticity. Rubin JE; Gerkin RC; Bi GQ; Chow CC J Neurophysiol; 2005 May; 93(5):2600-13. PubMed ID: 15625097 [TBL] [Abstract][Full Text] [Related]
36. Kinetic models of spike-timing dependent plasticity and their functional consequences in detecting correlations. Zou Q; Destexhe A Biol Cybern; 2007 Jul; 97(1):81-97. PubMed ID: 17530277 [TBL] [Abstract][Full Text] [Related]
37. Reelin and apoE actions on signal transduction, synaptic function and memory formation. Rogers JT; Weeber EJ Neuron Glia Biol; 2008 Aug; 4(3):259-70. PubMed ID: 19674510 [TBL] [Abstract][Full Text] [Related]
39. GluR2 protein-protein interactions and the regulation of AMPA receptors during synaptic plasticity. Duprat F; Daw M; Lim W; Collingridge G; Isaac J Philos Trans R Soc Lond B Biol Sci; 2003 Apr; 358(1432):715-20. PubMed ID: 12740117 [TBL] [Abstract][Full Text] [Related]
40. Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Yeung LC; Shouval HZ; Blais BS; Cooper LN Proc Natl Acad Sci U S A; 2004 Oct; 101(41):14943-8. PubMed ID: 15466713 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]