BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 12462461)

  • 1. Inorganic-organic polymer hybrid scaffold for tissue engineering--II: partial enzymatic degradation of hydroxyapatite-chitosan hybrid.
    Tachaboonyakiat W; Serizawa T; Akashi M
    J Biomater Sci Polym Ed; 2002; 13(9):1021-32. PubMed ID: 12462461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of enzymatic hydrolysis specificity of partially N-acetylated chitosans.
    Vårum KM; Holme HK; Izume M; Stokke BT; Smidsrød O
    Biochim Biophys Acta; 1996 Aug; 1291(1):5-15. PubMed ID: 8781519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Chitosan depolymerization by enzymes from hepatopancreas of the crab Paralithodes camtschaticus].
    Novikov VIu; Mukhin VA
    Prikl Biokhim Mikrobiol; 2003; 39(5):530-5. PubMed ID: 14593865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering.
    Chen P; Liu L; Pan J; Mei J; Li C; Zheng Y
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():325-335. PubMed ID: 30678918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering.
    Wang YC; Lin MC; Wang DM; Hsieh HJ
    Biomaterials; 2003 Mar; 24(6):1047-57. PubMed ID: 12504527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous-conductive chitosan scaffolds for tissue engineering, 1. Preparation and characterization.
    Wan Y; Wu H; Wen D
    Macromol Biosci; 2004 Sep; 4(9):882-90. PubMed ID: 15468297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications.
    Isikli C; Hasirci V; Hasirci N
    J Tissue Eng Regen Med; 2012 Feb; 6(2):135-43. PubMed ID: 21351375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of chitosan and poly-L-lysine membranes coating DNA-alginate beads when exposed to hydrolytic enzymes.
    Quong D; Yeo JN; Neufeld RJ
    J Microencapsul; 1999; 16(1):73-82. PubMed ID: 9972504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of chitosanase from Bacillus cereus S1.
    Kurakake M; Yo-u S; Nakagawa K; Sugihara M; Komaki T
    Curr Microbiol; 2000 Jan; 40(1):6-9. PubMed ID: 10568796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of the degree of acetylation of chitosan on its enzymatic hydrolysis with the preparation Celloviridin G20x].
    Il'ina AV; Varlamov VP
    Prikl Biokhim Mikrobiol; 2003; 39(3):273-7. PubMed ID: 12754823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings.
    Martins AM; Pham QP; Malafaya PB; Raphael RM; Kasper FK; Reis RL; Mikos AG
    Tissue Eng Part A; 2009 Aug; 15(8):1953-63. PubMed ID: 19327018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarized light-stimulated enzymatic hydrolysis of chitin and chitosan.
    Konieczna-Molenda A; Fiedorowicz M; Zhong W; Tomasik P
    Carbohydr Res; 2008 Dec; 343(18):3117-9. PubMed ID: 18823881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and properties of bilayer chitosan-gelatin scaffolds.
    Mao JS; Zhao LG; Yin YJ; Yao KD
    Biomaterials; 2003 Mar; 24(6):1067-74. PubMed ID: 12504529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study on chitosan-gelatin/hydroxyapatite composite scaffolds--preparation and morphology].
    Zhao F; Yin YJ; Song XF
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2001 Sep; 15(5):276-9. PubMed ID: 11761853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation behavior and compatibility of micro, nanoHA/chitosan scaffolds with interconnected spherical macropores.
    Ruixin L; Cheng X; Yingjie L; Hao L; Caihong S; Weihua S; Weining A; Yinghai Y; Xiaoli Q; Yunqiang X; Xizheng Z; Hui L
    Int J Biol Macromol; 2017 Oct; 103():385-394. PubMed ID: 28366859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multichannel mould processing of 3D structures from microporous coralline hydroxyapatite granules and chitosan support materials for guided tissue regeneration/engineering.
    Baran ET; Tuzlakoglu K; Salgado AJ; Reis RL
    J Mater Sci Mater Med; 2004 Feb; 15(2):161-5. PubMed ID: 15330051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering.
    Shavandi A; Bekhit Ael-D; Sun Z; Ali A; Gould M
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():373-83. PubMed ID: 26117768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogels of N-acylchitosans and their cellulose composites generated from the aqueous alkaline solutions.
    Hirano S; Usutani A
    Int J Biol Macromol; 1997 Jul; 20(4):245-9. PubMed ID: 9253644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of calcium-phosphate and chitosan bioceramics for bone regeneration.
    Finisie MR; Josué A; Fávere VT; Laranjeira MC
    An Acad Bras Cienc; 2001 Dec; 73(4):525-32. PubMed ID: 11743600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.