These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 12462482)

  • 1. Phytoremediation: a technology using green plants to remove contaminants from polluted areas.
    Garbisu C; Hernández-Allica J; Barrutia O; Alkorta I; Becerril JM
    Rev Environ Health; 2002; 17(3):173-88. PubMed ID: 12462482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment.
    Garbisu C; Alkorta I
    Bioresour Technol; 2001 May; 77(3):229-36. PubMed ID: 11272009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants.
    Salt DE; Blaylock M; Kumar NP; Dushenkov V; Ensley BD; Chet I; Raskin I
    Biotechnology (N Y); 1995 May; 13(5):468-74. PubMed ID: 9634787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of heavy metals from soils.
    McIntyre T
    Adv Biochem Eng Biotechnol; 2003; 78():97-123. PubMed ID: 12674400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaches for enhanced phytoextraction of heavy metals.
    Bhargava A; Carmona FF; Bhargava M; Srivastava S
    J Environ Manage; 2012 Aug; 105():103-20. PubMed ID: 22542973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation--a novel and promising approach for environmental clean-up.
    Suresh B; Ravishankar GA
    Crit Rev Biotechnol; 2004; 24(2-3):97-124. PubMed ID: 15493528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoextraction of toxic metals: a review of biological mechanisms.
    Lasat MM
    J Environ Qual; 2002; 31(1):109-20. PubMed ID: 11837415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation of heavy metals--concepts and applications.
    Ali H; Khan E; Sajad MA
    Chemosphere; 2013 May; 91(7):869-81. PubMed ID: 23466085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation of toxic aromatic pollutants from soil.
    Singh OV; Jain RK
    Appl Microbiol Biotechnol; 2003 Dec; 63(2):128-35. PubMed ID: 12925865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of plants for remediation of metal-contaminated soils.
    Vassilev A; Schwitzguebel JP; Thewys T; Van Der Lelie D; Vangronsveld J
    ScientificWorldJournal; 2004 Jan; 4():9-34. PubMed ID: 14755099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The identification of phytoextraction potential of Melilotus officinalis and Amaranthus retroflexus growing on copper- and molybdenum-polluted soils.
    Ghazaryan KA; Movsesyan HS; Minkina TM; Sushkova SN; Rajput VD
    Environ Geochem Health; 2021 Apr; 43(4):1327-1335. PubMed ID: 31140132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation and its models for organic contaminated soils.
    Gao YZ; Zhu LZ
    J Environ Sci (China); 2003 May; 15(3):302-10. PubMed ID: 12938977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of organic contaminants in soils.
    Alkorta I; Garbisu C
    Bioresour Technol; 2001 Sep; 79(3):273-6. PubMed ID: 11499581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoextraction and phytostabilization potential of plants grown in the vicinity of heavy metal-contaminated soils: a case study at an industrial town site.
    Lorestani B; Yousefi N; Cheraghi M; Farmany A
    Environ Monit Assess; 2013 Dec; 185(12):10217-23. PubMed ID: 23856813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils?
    Vondráčková S; Tlustoš P; Száková J
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19201-19210. PubMed ID: 28664494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals.
    Cheraghi M; Lorestani B; Khorasani N; Yousefi N; Karami M
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1133-41. PubMed ID: 19319488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation of soils co-contaminated by organic compounds and heavy metals: bioassays with Lupinus luteus L. and associated endophytic bacteria.
    Gutiérrez-Ginés MJ; Hernández AJ; Pérez-Leblic MI; Pastor J; Vangronsveld J
    J Environ Manage; 2014 Oct; 143():197-207. PubMed ID: 24912107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil plant microbe interactions in phytoremediation.
    Karthikeyan R; Kulakow PA
    Adv Biochem Eng Biotechnol; 2003; 78():51-74. PubMed ID: 12674398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendroremediation of heavy metal polluted soils.
    González-Oreja JA; Rozas MA; Alkorta I; Garbisu C
    Rev Environ Health; 2008; 23(3):223-34. PubMed ID: 19119687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.