These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 12462972)
1. Experimental modeling of the cathode reduction of carbon dioxide on pyrite in deep hydrothermal vents. Vladimirov MG; Ryzhkov Y; Alekseev VA; Bogdanovskaya VA; Kritsky MS; Otroshchenko VA Dokl Biochem Biophys; 2002; 385():205-8. PubMed ID: 12462972 [No Abstract] [Full Text] [Related]
2. Electrochemical reduction of carbon dioxide on pyrite as a pathway for abiogenic formation of organic molecules. Vladimirov MG; Ryzhkov YF; Alekseev VA; Bogdanovskaya VA; Otroshchenko VA; Kritsky MS Orig Life Evol Biosph; 2004 Aug; 34(4):347-60. PubMed ID: 15279170 [TBL] [Abstract][Full Text] [Related]
3. Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions. Roldan A; Hollingsworth N; Roffey A; Islam HU; Goodall JB; Catlow CR; Darr JA; Bras W; Sankar G; Holt KB; Hogarth G; de Leeuw NH Chem Commun (Camb); 2015 May; 51(35):7501-4. PubMed ID: 25835242 [TBL] [Abstract][Full Text] [Related]
4. Greigite nanocrystals produced by hyperthermophilic archaea of Thermococcales order. Gorlas A; Jacquemot P; Guigner JM; Gill S; Forterre P; Guyot F PLoS One; 2018; 13(8):e0201549. PubMed ID: 30071063 [TBL] [Abstract][Full Text] [Related]
5. Photoelectrochemical power, chemical energy and catalytic activity for organic evolution on natural pyrite interfaces. Tributsch H; Fiechter S; Jokisch D; Rojas-Chapana J; Ellmer K Orig Life Evol Biosph; 2003 Apr; 33(2):129-62. PubMed ID: 12967264 [TBL] [Abstract][Full Text] [Related]
6. Pyrite oxidation in unsaturated aquifer sediments. Reaction stoichiometry and rate of oxidation. Andersen MS; Larsen F; Postma D Environ Sci Technol; 2001 Oct; 35(20):4074-9. PubMed ID: 11686369 [TBL] [Abstract][Full Text] [Related]
7. Iron-catalyzed hydrogenation of bicarbonates and carbon dioxide to formates. Zhu F; Zhu-Ge L; Yang G; Zhou S ChemSusChem; 2015 Feb; 8(4):609-12. PubMed ID: 25603778 [TBL] [Abstract][Full Text] [Related]
8. [Investigation on mechanism of pyrite oxidation in acidic solutions]. Wang N; Yi XY; Dang Z; Liu Y Huan Jing Ke Xue; 2012 Nov; 33(11):3916-21. PubMed ID: 23323425 [TBL] [Abstract][Full Text] [Related]
9. Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst. Ammar S; Oturan MA; Labiadh L; Guersalli A; Abdelhedi R; Oturan N; Brillas E Water Res; 2015 May; 74():77-87. PubMed ID: 25720669 [TBL] [Abstract][Full Text] [Related]
10. Dithiophosphinate-pyrite interaction: voltammetry and DRIFT spectroscopy investigations at oxidizing potentials. Güler T J Colloid Interface Sci; 2005 Aug; 288(2):319-24. PubMed ID: 15927595 [TBL] [Abstract][Full Text] [Related]
11. Oxidative transformation of iron monosulfides and pyrite in estuarine sediments: Implications for trace metals mobilisation. Choppala G; Bush R; Moon E; Ward N; Wang Z; Bolan N; Sullivan L J Environ Manage; 2017 Jan; 186(Pt 2):158-166. PubMed ID: 27394083 [TBL] [Abstract][Full Text] [Related]
12. Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts. Foustoukos DI; Seyfried WE Science; 2004 May; 304(5673):1002-5. PubMed ID: 15060286 [TBL] [Abstract][Full Text] [Related]
13. In situ trace metal analysis of Neoarchaean--Ordovician shallow-marine microbial-carbonate-hosted pyrites. Gallagher M; Turner EC; Kamber BS Geobiology; 2015 Jul; 13(4):316-39. PubMed ID: 25917609 [TBL] [Abstract][Full Text] [Related]
14. The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. Agarwal AS; Zhai Y; Hill D; Sridhar N ChemSusChem; 2011 Sep; 4(9):1301-10. PubMed ID: 21922681 [TBL] [Abstract][Full Text] [Related]
15. Direct reduction of carbon dioxide to formate in high-gas-capacity ionic liquids at post-transition-metal electrodes. Watkins JD; Bocarsly AB ChemSusChem; 2014 Jan; 7(1):284-90. PubMed ID: 24203913 [TBL] [Abstract][Full Text] [Related]
16. The impact of preload on the mobilisation of multivalent trace metals in pyrite-rich sediment. Karikari-Yeboah O; Skinner W; Addai-Mensah J Environ Monit Assess; 2018 Jun; 190(7):398. PubMed ID: 29904798 [TBL] [Abstract][Full Text] [Related]
18. Abiotic pyrite formation produces a large Fe isotope fractionation. Guilbaud R; Butler IB; Ellam RM Science; 2011 Jun; 332(6037):1548-51. PubMed ID: 21700871 [TBL] [Abstract][Full Text] [Related]
19. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Jørgensen CJ; Jacobsen OS; Elberling B; Aamand J Environ Sci Technol; 2009 Jul; 43(13):4851-7. PubMed ID: 19673275 [TBL] [Abstract][Full Text] [Related]
20. Removal of cyanide adsorbed on pyrite by H Tu Y; Han P; Wei L; Zhang X; Yu B; Qian P; Ye S J Environ Sci (China); 2019 Apr; 78():287-292. PubMed ID: 30665647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]