These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12463342)

  • 1. Linear mechanistic models for the dorsal lateral geniculate nucleus of cat probed using drifting-grating stimuli.
    Einevoll GT; Plesser HE
    Network; 2002 Nov; 13(4):503-30. PubMed ID: 12463342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical models for the spatial receptive-field organization of nonlagged X-cells in dorsal lateral geniculate nucleus of cat.
    Einevoll GT; Heggelund P
    Vis Neurosci; 2000; 17(6):871-85. PubMed ID: 11193103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat.
    Dubin MW; Cleland BG
    J Neurophysiol; 1977 Mar; 40(2):410-27. PubMed ID: 191574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial summation and center-surround antagonism in the receptive field of single units in the dorsal lateral geniculate nucleus of cat: comparison with retinal input.
    Ruksenas O; Fjeld IT; Heggelund P
    Vis Neurosci; 2000; 17(6):855-70. PubMed ID: 11193102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat.
    Soodak RE; Shapley RM; Kaplan E
    J Neurophysiol; 1987 Aug; 58(2):267-75. PubMed ID: 3655866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical Network Modelling of the dLGN Circuit: Different Effects of Triadic and Axonal Inhibition on Visual Responses of Relay Cells.
    Heiberg T; Hagen E; Halnes G; Einevoll GT
    PLoS Comput Biol; 2016 May; 12(5):e1004929. PubMed ID: 27203421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical network modeling of the dLGN circuit: Effects of cortical feedback on spatial response properties of relay cells.
    Martínez-Cañada P; Mobarhan MH; Halnes G; Fyhn M; Morillas C; Pelayo F; Einevoll GT
    PLoS Comput Biol; 2018 Jan; 14(1):e1005930. PubMed ID: 29377888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brainstem modulation of visual response properties of single cells in the dorsal lateral geniculate nucleus of cat.
    Fjeld IT; Ruksenas O; Heggelund P
    J Physiol; 2002 Sep; 543(Pt 2):541-54. PubMed ID: 12205188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlagged relay cells and interneurons in the cat lateral geniculate nucleus: receptive-field properties and retinal inputs.
    Mastronarde DN
    Vis Neurosci; 1992 May; 8(5):407-41. PubMed ID: 1586644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A generalized linear model of the impact of direct and indirect inputs to the lateral geniculate nucleus.
    Babadi B; Casti A; Xiao Y; Kaplan E; Paninski L
    J Vis; 2010 Aug; 10(10):22. PubMed ID: 20884487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings.
    Shou T; Li X; Zhou Y; Hu B
    Vis Neurosci; 1996; 13(4):605-13. PubMed ID: 8870219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corticothalamic Axons Are Essential for Retinal Ganglion Cell Axon Targeting to the Mouse Dorsal Lateral Geniculate Nucleus.
    Shanks JA; Ito S; Schaevitz L; Yamada J; Chen B; Litke A; Feldheim DA
    J Neurosci; 2016 May; 36(19):5252-63. PubMed ID: 27170123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response variability of single cells in the dorsal lateral geniculate nucleus of the cat. Comparison with retinal input and effect of brain stem stimulation.
    Hartveit E; Heggelund P
    J Neurophysiol; 1994 Sep; 72(3):1278-89. PubMed ID: 7807211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feedback inhibition and throughput properties of an integrate-and-fire-or-burst network model of retinogeniculate transmission.
    Huertas MA; Groff JR; Smith GD
    J Comput Neurosci; 2005 Oct; 19(2):147-80. PubMed ID: 16133817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus.
    Cudeiro J; Sillito AM
    J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):481-92. PubMed ID: 8821144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholine inhibits identified interneurons in the cat lateral geniculate nucleus.
    McCormick DA; Pape HC
    Nature; 1988 Jul; 334(6179):246-8. PubMed ID: 3398922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus.
    Sherman SM; Koch C
    Exp Brain Res; 1986; 63(1):1-20. PubMed ID: 3015651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast.
    Cheng H; Chino YM; Smith EL; Hamamoto J; Yoshida K
    J Neurophysiol; 1995 Dec; 74(6):2548-57. PubMed ID: 8747213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of corticofugal feedback on the temporal structure of visual responses of cat thalamic relay cells.
    Wörgötter F; Nelle E; Li B; Funke K
    J Physiol; 1998 Jun; 509 ( Pt 3)(Pt 3):797-815. PubMed ID: 9596801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On Parallel Streams through the Mouse Dorsal Lateral Geniculate Nucleus.
    Denman DJ; Contreras D
    Front Neural Circuits; 2016; 10():20. PubMed ID: 27065811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.