These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12463355)

  • 21. Improved fabrication of double-barreled recessed cathode O2 microelectrodes.
    Linsenmeier RA; Yancey CM
    J Appl Physiol (1985); 1987 Dec; 63(6):2554-7. PubMed ID: 3436887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. General properties of antimony microelectrode in comparison with glass microelectrode for pH measurement.
    Fujimoto M; Matsumura Y; Satake N
    Jpn J Physiol; 1980; 30(4):491-508. PubMed ID: 6970289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural interface dynamics following insertion of hydrous iridium oxide microelectrode arrays.
    Johnson MD; Langhals NB; Kipke DR
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3178-81. PubMed ID: 17947012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contribution of oxygen reduction to charge injection on platinum and sputtered iridium oxide neural stimulation electrodes.
    Cogan SF; Ehrlich J; Plante TD; Gingerich MD; Shire DB
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2313-21. PubMed ID: 20515708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes.
    Cogan SF; Troyk PR; Ehrlich J; Plante TD
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1612-4. PubMed ID: 16189975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential pH measurements of metabolic cellular activity in nl culture volumes using microfabricated iridium oxide electrodes.
    Ges IA; Ivanov BL; Werdich AA; Baudenbacher FJ
    Biosens Bioelectron; 2007 Feb; 22(7):1303-10. PubMed ID: 16860556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iridium oxide pH microelectrode.
    Vanhoudt P; Lewandowski Z; Little B
    Biotechnol Bioeng; 1992 Aug; 40(5):601-8. PubMed ID: 18601156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication, calibration and evaluation of a phosphate ion-selective microelectrode.
    Wang JJ; Bishop PL
    Environ Pollut; 2010 Dec; 158(12):3612-7. PubMed ID: 20851510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of low-cost metal oxide pH electrodes based on the polymeric precursor method.
    da Silva GM; Lemos SG; Pocrifka LA; Marreto PD; Rosario AV; Pereira EC
    Anal Chim Acta; 2008 May; 616(1):36-41. PubMed ID: 18471481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potentiometric responses of ion-selective microelectrode with bovine serum albumin adsorption.
    Goda T; Yamada E; Katayama Y; Tabata M; Matsumoto A; Miyahara Y
    Biosens Bioelectron; 2016 Mar; 77():208-14. PubMed ID: 26409020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of an iridium electrode for direct measurements of pI of proteins after isoelectric focusing in polyacrylamide gel.
    Papeschi G; Bordi S; Beni C; Ventura L
    Biochim Biophys Acta; 1976 Nov; 453(1):192-9. PubMed ID: 11823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and characterization of an all-solid-state potentiometric biosensor array microfluidic device for multiple ion analysis.
    Liao WY; Weng CH; Lee GB; Chou TC
    Lab Chip; 2006 Oct; 6(10):1362-8. PubMed ID: 17102850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of the geometry and porosity of microelectrode arrays for sensor design.
    Sandison ME; Anicet N; Glidle A; Cooper JM
    Anal Chem; 2002 Nov; 74(22):5717-25. PubMed ID: 12463354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimising amperometric pH sensing in blood samples: an iridium oxide electrode for blood pH sensing.
    Chaisiwamongkhol K; Batchelor-McAuley C; Compton RG
    Analyst; 2019 Feb; 144(4):1386-1393. PubMed ID: 30569049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of simultaneous pH measurements made with 8-hydroxypyrene-1,3,6-trisulphonic acid (HPTS) and pH-sensitive microelectrodes in snail neurones.
    Willoughby D; Thomas RC; Schwiening CJ
    Pflugers Arch; 1998 Jul; 436(4):615-22. PubMed ID: 9683736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH microelectrode: modified Thomas recessed-tip configuration.
    Pucacco LR; Corona SK; Jacobson HR; Carter NW
    Anal Biochem; 1986 Mar; 153(2):251-61. PubMed ID: 3706708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physicochemical properties of a liquid ion exchanger microelectrode and its application to biological fluids.
    Fujimoto M; Kubota T
    Jpn J Physiol; 1976; 26(6):631-50. PubMed ID: 16152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-unit recording with iridium oxide modified stereotrodes in Drosophila melanogaster.
    Zhong C; Zhang Y; He W; Wei P; Lu Y; Zhu Y; Liu L; Wang L
    J Neurosci Methods; 2014 Jan; 222():218-29. PubMed ID: 24286699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Miniaturized redox potential probe for in situ environmental monitoring.
    Jang A; Lee JH; Bhadri PR; Kumar SA; Timmons W; Beyette FR; Papautsky I; Bishop PL
    Environ Sci Technol; 2005 Aug; 39(16):6191-7. PubMed ID: 16173580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new design of double-barrelled microelectrodes for intracellular pH-measurement in vivo.
    Hagberg H; Larsson S; Haljamäe H
    Acta Physiol Scand; 1983 Jun; 118(2):149-53. PubMed ID: 6414249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.