These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 12463372)

  • 1. Chemical compositions of hardwood and softwood pulps employing photoacoustic Fourier transform infrared spectroscopy in combination with partial least-squares analysis.
    Bjarnestad S; Dahlman O
    Anal Chem; 2002 Nov; 74(22):5851-8. PubMed ID: 12463372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multivariate Analysis of Hemicelluloses in Bleached Kraft Pulp Using Infrared Spectroscopy.
    Chen Z; Hu TQ; Jang HF; Grant E
    Appl Spectrosc; 2016 Dec; 70(12):1981-1993. PubMed ID: 27794038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of carboxyl content in high-yield kraft pulps using photoacoustic rapid-scan Fourier transform infrared spectroscopy.
    Bhardwaj NK; Dang VQ; Nguyen KL
    Anal Chem; 2006 Oct; 78(19):6818-25. PubMed ID: 17007501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Residual Lignin Type and Amount on Bleaching of Kraft Pulp by Trametes versicolor.
    Reid ID; Paice MG
    Appl Environ Microbiol; 1994 May; 60(5):1395-400. PubMed ID: 16349246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of xylan in alkaline treated bleached hardwood kraft pulps as classified by attenuated total-internal-reflection (ATR) FTIR spectroscopy.
    Chen Z; Hu TQ; Jang HF; Grant E
    Carbohydr Polym; 2015 Aug; 127():418-26. PubMed ID: 25965501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared spectroscopy as alternative to wet chemical analysis to characterize Eucalyptus globulus pulps and predict their ethanol yield for a simultaneous saccharification and fermentation process.
    Castillo Rdel P; Baeza J; Rubilar J; Rivera A; Freer J
    Appl Biochem Biotechnol; 2012 Dec; 168(7):2028-42. PubMed ID: 23070712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier transform infrared quantitative analysis of sugars and lignin in pretreated softwood solid residues.
    Tucker MP; Nguyen QA; Eddy FP; Kadam KL; Gedvilas LM; Webb JD
    Appl Biochem Biotechnol; 2001; 91-93():51-61. PubMed ID: 11963880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using near infrared spectroscopy to predict the lignin content and monosaccharide compositions of Pinus radiata wood cell walls.
    Fahey LM; Nieuwoudt MK; Harris PJ
    Int J Biol Macromol; 2018 Jul; 113():507-514. PubMed ID: 29458099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocellulosic biomasses.
    Sills DL; Gossett JM
    Biotechnol Bioeng; 2012 Apr; 109(4):894-903. PubMed ID: 22094883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugar and acid content of Citrus prediction modeling using FT-IR fingerprinting in combination with multivariate statistical analysis.
    Song SY; Lee YK; Kim IJ
    Food Chem; 2016 Jan; 190():1027-1032. PubMed ID: 26213071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of mixed hardwood lignin and carbohydrate content using ATR-FTIR and FT-NIR.
    Zhou C; Jiang W; Via BK; Fasina O; Han G
    Carbohydr Polym; 2015 May; 121():336-41. PubMed ID: 25659707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bleachability and characterization by Fourier transform infrared principal component analysis of Acetosolv pulps obtained from sugarcane bagasse.
    Gonçalves AR; Ruzene DS
    Appl Biochem Biotechnol; 2001; 91-93():63-70. PubMed ID: 11963892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative characterization of lignocellulosic biomass using surrogate mixtures and multivariate techniques.
    Krasznai DJ; Champagne P; Cunningham MF
    Bioresour Technol; 2012 Apr; 110():652-61. PubMed ID: 22342087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses.
    Sills DL; Gossett JM
    Biotechnol Bioeng; 2012 Feb; 109(2):353-62. PubMed ID: 21898366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and nondestructive determination of protein content in rapeseeds (Brassica napus L.) using Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS).
    Lu Y; Du C; Yu C; Zhou J
    J Sci Food Agric; 2014 Aug; 94(11):2239-45. PubMed ID: 24374740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining FT-IR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development.
    Szymanska-Chargot M; Chylinska M; Kruk B; Zdunek A
    Carbohydr Polym; 2015 Jan; 115():93-103. PubMed ID: 25439873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis.
    Musingarabwi DM; Nieuwoudt HH; Young PR; Eyéghè-Bickong HA; Vivier MA
    Food Chem; 2016 Jan; 190():253-262. PubMed ID: 26212968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in residual lignin properties between Betula verrucosa and Eucalyptus urograndis kraft pulps.
    Hänninen TA; Kontturi E; Isogai A; Vuorinen T
    Biopolymers; 2008 Oct; 89(10):889-93. PubMed ID: 18488987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Rapid identification of softwood and hardwood by near infrared spectroscopy of cross-sectional surfaces].
    Yang Z; Lü B; Huang AM; Liu YN; Xie XQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jul; 32(7):1785-9. PubMed ID: 23016325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulp properties and their influence on enzymatic degradability.
    Gehmayr V; Sixta H
    Biomacromolecules; 2012 Mar; 13(3):645-51. PubMed ID: 22300287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.