These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 12463552)

  • 1. The concept of persistence as applied to metals for aquatic hazard identification.
    Skeaff JM; Dubreuil AA; Brigham SI
    Environ Toxicol Chem; 2002 Dec; 21(12):2581-90. PubMed ID: 12463552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Setting water quality criteria in China: approaches for developing species sensitivity distributions for metals and metalloids.
    Liu Y; Wu F; Mu Y; Feng C; Fang Y; Chen L; Giesy JP
    Rev Environ Contam Toxicol; 2014; 230():35-57. PubMed ID: 24609517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment.
    McGeer JC; Brix KV; Skeaff JM; DeForest DK; Brigham SI; Adams WJ; Green A
    Environ Toxicol Chem; 2003 May; 22(5):1017-37. PubMed ID: 12729211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships among total recoverable and reactive metals and metalloid in St. Lawrence River sediment: bioaccumulation by chironomids and implications for ecological risk assessment.
    Desrosiers M; Gagnon C; Masson S; Martel L; Babut MP
    Sci Total Environ; 2008 Jan; 389(1):101-14. PubMed ID: 17900660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geochemistry and bioavailability of metals in sediments from northern San Francisco Bay.
    Lu XQ; Werner I; Young TM
    Environ Int; 2005 May; 31(4):593-602. PubMed ID: 15788199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.
    Jong T; Parry DL
    J Environ Monit; 2004 Apr; 6(4):278-85. PubMed ID: 15054535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability.
    Turner A; Mawji E
    Environ Pollut; 2005 May; 135(2):235-44. PubMed ID: 15734583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of glyphosate and its formulation (Roundup) on the toxicity and bioavailability of metals to Ceriodaphnia dubia.
    Tsui MT; Wang WX; Chu LM
    Environ Pollut; 2005 Nov; 138(1):59-68. PubMed ID: 15878796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased metal bioavailability following alteration of freshwater dissolved organic carbon by ultraviolet B radiation exposure.
    Winch S; Ridal J; Lean D
    Environ Toxicol; 2002; 17(3):267-74. PubMed ID: 12112635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity identification of metals: development of toxicity identification fingerprints.
    Van Sprang PA; Janssen CR
    Environ Toxicol Chem; 2001 Nov; 20(11):2604-10. PubMed ID: 11699788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observed and modeled seasonal trends in dissolved and particulate Cu, Fe, Mn, and Zn in a mining-impacted stream.
    Butler BA; Ranville JF; Ross PE
    Water Res; 2008 Jun; 42(12):3135-45. PubMed ID: 18433827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diurnal variations of dissolved and colloidal organic carbon and trace metals in a boreal lake during summer bloom.
    Pokrovsky OS; Shirokova LS
    Water Res; 2013 Feb; 47(2):922-32. PubMed ID: 23219386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophobicity and octanol-water partitioning of trace metals in natural waters.
    Turner A; Mawji E
    Environ Sci Technol; 2004 Jun; 38(11):3081-91. PubMed ID: 15224739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal and metalloid contaminant availability in Yundang Lagoon sediments, Xiamen Bay, China, after 20 years continuous rehabilitation.
    Chen C; Lu Y; Hong J; Ye M; Wang Y; Lu H
    J Hazard Mater; 2010 Mar; 175(1-3):1048-55. PubMed ID: 19945221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terrestrial ecotoxicity and effect factors of metals in life cycle assessment (LCA).
    Haye S; Slaveykova VI; Payet J
    Chemosphere; 2007 Jul; 68(8):1489-96. PubMed ID: 17467037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural attenuation processes in two water reservoirs receiving acid mine drainage.
    Sarmiento AM; Olías M; Nieto JM; Cánovas CR; Delgado J
    Sci Total Environ; 2009 Mar; 407(6):2051-62. PubMed ID: 19073338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments--a case study: Mahanadi basin, India.
    Sundaray SK; Nayak BB; Lin S; Bhatta D
    J Hazard Mater; 2011 Feb; 186(2-3):1837-46. PubMed ID: 21247687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anthropogenic sources and environmentally relevant concentrations of heavy metals in surface water of a mining district in Ghana: a multivariate statistical approach.
    Armah FA; Obiri S; Yawson DO; Onumah EE; Yengoh GT; Afrifa EK; Odoi JO
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Nov; 45(13):1804-13. PubMed ID: 20924925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new approach to the hazard classification of alloys based on transformation/dissolution.
    Skeaff JM; Hardy DJ; King P
    Integr Environ Assess Manag; 2008 Jan; 4(1):75-93. PubMed ID: 17944545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.