These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 12463671)

  • 1. The influence of surface roughness on stem-cement gaps.
    Race A; Miller MA; Ayers DC; Cleary RJ; Mann KA
    J Bone Joint Surg Br; 2002 Nov; 84(8):1199-204. PubMed ID: 12463671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rough surface finish adversely affects the survivorship of a cemented femoral stem.
    Della Valle AG; Zoppi A; Peterson MG; Salvati EA
    Clin Orthop Relat Res; 2005 Jul; (436):158-63. PubMed ID: 15995435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of femoral neck length, stem size, and body weight on strains in the proximal cement mantle.
    Harrington MA; O'Connor DO; Lozynsky AJ; Kovach I; Harris WH
    J Bone Joint Surg Am; 2002 Apr; 84(4):573-9. PubMed ID: 11940617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface roughness of debonded straight-tapered stems in cemented THA reduces subsidence but not cement damage.
    Verdonschot N; Huiskes R
    Biomaterials; 1998 Oct; 19(19):1773-9. PubMed ID: 9856588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early cementing does not increase debond energy of grit blasted interfaces.
    Mann KA; Damron LA; Race A; Ayers DC
    J Orthop Res; 2004 Jul; 22(4):822-7. PubMed ID: 15183440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cement-implant interface gaps explain the poor results of CMW3 for femoral stem fixation: A cadaver study of migration, fatigue and mantle morphology.
    Race A; Miller MA; Clarke MT; Mann KA
    Acta Orthop; 2005 Oct; 76(5):679-87. PubMed ID: 16263615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of femoral stem surface finish on the apparent static shear strength at the stem-cement interface.
    Zhang H; Brown LT; Blunt LA; Barrans SM
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):96-104. PubMed ID: 19627775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of stem geometry on mechanics of cemented femoral hip components with a proximal bond.
    Mann KA; Bartel DL; Ayers DC
    J Orthop Res; 1997 Sep; 15(5):700-6. PubMed ID: 9420599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial stability of cemented femoral stems as a function of surface finish, collar, and stem size.
    Ebramzadeh E; Sangiorgio SN; Longjohn DB; Buhari CF; Dorr LD
    J Bone Joint Surg Am; 2004 Jan; 86(1):106-15. PubMed ID: 14711952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of prosthesis surface roughness on the failure process of cemented hip implants after stem-cement debonding.
    Verdonschot N; Tanck E; Huiskes R
    J Biomed Mater Res; 1998 Dec; 42(4):554-9. PubMed ID: 9827679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random damage and characteristics of debris particles are two important and yet ignored factors in the mechanical integrity of the stem-cement interface of a total hip replacement: influence of the surface finish of the metal stem.
    Qi G; Wayne SF; Mann KA; Zhang B; Lewis G
    J Mater Sci Mater Med; 2010 Apr; 21(4):1385-92. PubMed ID: 19946736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges in relating experimental hip implant fixation predictions to clinical observations.
    Sangiorgio SN; Longjohn DB; Dorr LD; Ebramzadeh E
    J Biomech; 2011 Jan; 44(2):235-43. PubMed ID: 21040920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro measurement of interface micromotion and crack in cemented total hip arthroplasty systems with different surface roughness.
    Choi D; Park Y; Yoon YS; Masri BA
    Clin Biomech (Bristol, Avon); 2010 Jan; 25(1):50-5. PubMed ID: 19744754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-vitro characteristics of cemented titanium femoral stems with a smooth surface finish.
    Akiyama H; Yamamoto K; Kaneuji A; Matsumoto T; Nakamura T
    J Orthop Sci; 2013 Jan; 18(1):29-37. PubMed ID: 22945910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of stem-cement interfacial gaps: in vitro CT analysis of Charnley-Kerboul and Lubinus SPII femoral hip implants.
    Scheerlinck T; Vandenbussche P; Noble PC; Dunn JS
    J Bone Joint Surg Br; 2008 Jan; 90(1):107-13. PubMed ID: 18160511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of clinical outcomes in total hip arthroplasty using rough and polished cemented stems with essentially the same geometry.
    Collis DK; Mohler CG
    J Bone Joint Surg Am; 2002 Apr; 84(4):586-92. PubMed ID: 11940619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stem surface roughness alters creep induced subsidence and 'taper-lock' in a cemented femoral hip prosthesis.
    Norman TL; Thyagarajan G; Saligrama VC; Gruen TA; Blaha JD
    J Biomech; 2001 Oct; 34(10):1325-33. PubMed ID: 11522312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Total hip arthroplasty with a cemented, polished, collared femoral stem and a cementless acetabular component. A follow-up study at a minimum of ten years.
    Firestone DE; Callaghan JJ; Liu SS; Goetz DD; Sullivan PM; Vittetoe DA; Johnston RC
    J Bone Joint Surg Am; 2007 Jan; 89(1):126-32. PubMed ID: 17200319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plain radiographs inadequate for evaluation of the cement-bone interface in the hip prosthesis. A cadaver study of femoral stems.
    Jacobs ME; Koeweiden EM; Slooff TJ; Huiskes R; van Horn JR
    Acta Orthop Scand; 1989 Oct; 60(5):541-3. PubMed ID: 2603653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using 'subcement' to simulate the long-term fatigue response of cemented femoral stems in a cadaver model: could a novel preclinical screening test have caught the Exeter matt problem?
    Race A; Miller MA; Mann KA
    Proc Inst Mech Eng H; 2010; 224(4):585-97. PubMed ID: 20476506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.