BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12463692)

  • 1. Kinetics of alkaline phosphatase and lactoperoxidase inactivation, and of beta-lactoglobulin denaturation in milk with different fat content.
    Claeys WL; Van Loey AM; Hendrickx ME
    J Dairy Res; 2002 Nov; 69(4):541-53. PubMed ID: 12463692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation kinetics of alkaline phosphatase and lactoperoxidase, and denaturation kinetics of beta-lactoglobulin in raw milk under isothermal and dynamic temperature conditions.
    Claeys WL; Ludikhuyze LR; van Loey AM; Hendrickx ME
    J Dairy Res; 2001 Feb; 68(1):95-107. PubMed ID: 11289274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From time temperature integrator kinetics to time temperature integrator tolerance levels: heat-treated milk.
    Claeys WL; Smout C; Van Loey AM; Hendrickx ME
    Biotechnol Prog; 2004; 20(1):1-12. PubMed ID: 14763817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of seasonal variation on kinetics of time temperature integrators for thermally processed milk.
    Claeys WL; Van Loey AM; Hendrickx ME
    J Dairy Res; 2003 May; 70(2):217-25. PubMed ID: 12800876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of hydroxymethylfurfural, lactulose and furosine formation in milk with different fat content.
    Claeys WL; Van Loey AM; Hendrickx ME
    J Dairy Res; 2003 Feb; 70(1):85-90. PubMed ID: 12617396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of frictional heating for effects of high pressure homogenisation on milk.
    Datta N; Hayes MG; Deeth HC; Kelly AL
    J Dairy Res; 2005 Nov; 72(4):393-9. PubMed ID: 16223453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of heating temperatures and addition of reconstituted milk on the heat indicators in milk.
    Lan XY; Wang JQ; Bu DP; Shen JS; Zheng N; Sun P
    J Food Sci; 2010 Oct; 75(8):C653-8. PubMed ID: 21535481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation-denaturation kinetics of bovine milk alkaline phosphatase during mild heating as determined by using a monoclonal antibody-based immunoassay.
    Levieux D; Geneix N; Levieux A
    J Dairy Res; 2007 Aug; 74(3):296-301. PubMed ID: 17466119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk.
    Villamiel M; de Jong P
    J Agric Food Chem; 2000 Feb; 48(2):472-8. PubMed ID: 10691659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High pressure thermal denaturation kinetics of whey proteins.
    Hinrichs J; Rademacher B
    J Dairy Res; 2004 Nov; 71(4):480-8. PubMed ID: 15605715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of changes in plasmin activity and proteolysis on heating milk.
    Crudden A; Oliveira JC; Kelly AL
    J Dairy Res; 2005 Nov; 72(4):493-504. PubMed ID: 16223467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of temperature and/or pressure on lactoperoxidase activity in bovine milk and acid whey.
    Ludikhuyze LR; Claeys WL; Hendrickx ME
    J Dairy Res; 2001 Nov; 68(4):625-37. PubMed ID: 11928959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical backscatter method for determining thermal denaturation of β-lactoglobulin and other whey proteins in milk.
    Lamb A; Payne F; Xiong YL; Castillo M
    J Dairy Sci; 2013 Mar; 96(3):1356-65. PubMed ID: 23357014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of high-pressure treatment on denaturation of bovine lactoferrin and lactoperoxidase.
    Mazri C; Sánchez L; Ramos SJ; Calvo M; Pérez MD
    J Dairy Sci; 2012 Feb; 95(2):549-57. PubMed ID: 22281319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of high pressure homogenisation of raw bovine milk on alkaline phosphatase and microbial inactivation. A comparison with continuous short-time thermal treatments.
    Picart L; Thiebaud M; René M; Pierre Guiraud J; Cheftel JC; Dumay E
    J Dairy Res; 2006 Nov; 73(4):454-63. PubMed ID: 16834813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in the processes of beta-lactoglobulin cold and heat denaturations.
    Griko YuV ; Kutyshenko VP
    Biophys J; 1994 Jul; 67(1):356-63. PubMed ID: 7919006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal modifications of structure and co-denaturation of alpha-lactalbumin and beta-lactoglobulin induce changes of solubility and susceptibility to proteases.
    Bertrand-Harb C; Baday A; Dalgalarrondo M; Chobert JM; Haertlé T
    Nahrung; 2002 Aug; 46(4):283-9. PubMed ID: 12224426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of pasteurisation of milk and cream produced by on-farm dairies using a fluorimetric method for alkaline phosphatase activity.
    Allen G; Bolton FJ; Wareing DR; Williamson JK; Wright PA
    Commun Dis Public Health; 2004 Jun; 7(2):96-101. PubMed ID: 15259408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Denaturation of beta-lactoglobulin in pressure-treated skim milk.
    Anema SG; Stockmann R; Lowe EK
    J Agric Food Chem; 2005 Oct; 53(20):7783-91. PubMed ID: 16190631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical evaluation of lactoperoxidase inactivation during continuous pulsed electric field processing.
    Buckow R; Semrau J; Sui Q; Wan J; Knoerzer K
    Biotechnol Prog; 2012; 28(5):1363-75. PubMed ID: 22736564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.