BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12463692)

  • 21. Effects of lactoperoxidase and hydrogen peroxide on rheological properties of yoghurt.
    Ozer B; Grandison A; Robinson R; Atamer M
    J Dairy Res; 2003 May; 70(2):227-32. PubMed ID: 12800877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of the lactoperoxidase system to the keeping quality of pasteurized milk.
    Barrett NE; Grandison AS; Lewis MJ
    J Dairy Res; 1999 Feb; 66(1):73-80. PubMed ID: 10191475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pressure-induced denaturation of β-lactoglobulin in skim milk: effect of milk concentration.
    Anema SG
    J Agric Food Chem; 2012 Jul; 60(26):6565-70. PubMed ID: 22676353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics of heat-induced whey protein denaturation and aggregation in skim milks with adjusted whey protein concentration.
    Oldfield DJ; Singh H; Taylor MW
    J Dairy Res; 2005 Aug; 72(3):369-78. PubMed ID: 16174369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Lactoperoxidase activity and thiocyanate content of milk from cows with mastitis in different lactation stages].
    Vobis V; Grün E; Thürkow B; Kramer A
    Berl Munch Tierarztl Wochenschr; 1995 Mar; 108(3):88-92. PubMed ID: 7646426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential applications of high pressure homogenisation in processing of liquid milk.
    Hayes MG; Fox PF; Kelly AL
    J Dairy Res; 2005 Feb; 72(1):25-33. PubMed ID: 15747728
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Mechanism of milk alkaline phosphatase reactivation].
    Lefranc G; Han K
    Ann Inst Pasteur Lille; 1969; 20():239-53. PubMed ID: 4993980
    [No Abstract]   [Full Text] [Related]  

  • 28. Effect of milk concentration on the irreversible thermal denaturation and disulfide aggregation of beta-lactoglobulin.
    Anema SG
    J Agric Food Chem; 2000 Sep; 48(9):4168-75. PubMed ID: 10995332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bound fatty acids modulate the sensitivity of bovine β-lactoglobulin to chemical and physical denaturation.
    Barbiroli A; Bonomi F; Ferranti P; Fessas D; Nasi A; Rasmussen P; Iametti S
    J Agric Food Chem; 2011 May; 59(10):5729-37. PubMed ID: 21506515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Residual alkaline phosphatase activity in pasteurized milk heated at various temperatures--measurement with the fluorophos and Scharer rapid phosphatase tests.
    Angelino PD; Christen GL; Penfield MP; Beattie S
    J Food Prot; 1999 Jan; 62(1):81-5. PubMed ID: 9921835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of calcium on β-lactoglobulin denaturation kinetics: Implications in unfolding and aggregation mechanisms.
    Petit J; Herbig AL; Moreau A; Delaplace G
    J Dairy Sci; 2011 Dec; 94(12):5794-810. PubMed ID: 22118070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Challenge testing of the lactoperoxidase system in pasteurized milk.
    Marks NE; Grandison AS; Lewis MJ
    J Appl Microbiol; 2001 Oct; 91(4):735-41. PubMed ID: 11576311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Buffalo-milk enzyme levels, their sensitivity to heat inactivation, and their possible use as markers for pasteurization.
    Lombardi P; Avallone L; d'Angelo A; Mor T; Bogin E
    J Food Prot; 2000 Jul; 63(7):970-3. PubMed ID: 10914671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal inactivation kinetics of bovine cathepsin D.
    Hayes MG; Hurley MJ; Larsen LB; Heegaard CW; Magboul AA; Oliveira JC; McSweeney PL; Kelly AL
    J Dairy Res; 2001 May; 68(2):267-76. PubMed ID: 11504390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Beta-lactoglobulin is a thermal marker in processed milk as studied by electrophoresis and circular dichroic spectra.
    Chen WL; Hwang MT; Liau CY; Ho JC; Hong KC; Mao SJ
    J Dairy Sci; 2005 May; 88(5):1618-30. PubMed ID: 15829652
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lactoperoxidase-induced protein oxidation in milk.
    Ostdal H; Bjerrum MJ; Pedersen JA; Andersen HJ
    J Agric Food Chem; 2000 Sep; 48(9):3939-44. PubMed ID: 10995295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescent labeling study of plasminogen concentration and location in simulated bovine milk systems.
    Wang L; Hayes KD; Mauer LJ
    J Dairy Sci; 2006 Jan; 89(1):58-70. PubMed ID: 16357268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Spectroscopic studies on the relationship between heat treatment process and immunogenicity of beta-lactoglobulin in milk].
    Wu XL; Zhu QQ; Cheng XJ; Xu H; Liu ZG; Wu H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Aug; 31(8):2205-9. PubMed ID: 22007418
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability.
    Altinkaynak C; Yilmaz I; Koksal Z; Özdemir H; Ocsoy I; Özdemir N
    Int J Biol Macromol; 2016 Mar; 84():402-9. PubMed ID: 26712698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of protein, nonprotein-soluble components, and lactose concentrations on the irreversible thermal denaturation of beta-lactoglobulin and alpha-lactalbumin in skim milk.
    Anema SG; Lee SK; Klostermeyer H
    J Agric Food Chem; 2006 Sep; 54(19):7339-48. PubMed ID: 16968103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.