BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12463692)

  • 41. Lactoperoxidase inhibition of some natural phenolic compounds: Kinetics and molecular docking studies.
    Koksal Z; Kalin R; Kalin P; Karaman M; Gulcin İ; Ozdemir H
    J Food Biochem; 2020 Feb; 44(2):e13132. PubMed ID: 31876973
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessment of the Thermal Treatment of Milk during Continuous Microwave and Conventional Heating.
    Lopez-Fandiño R; Villamiel M; Corzo N; Olano A
    J Food Prot; 1996 Aug; 59(8):889-892. PubMed ID: 31159122
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lactoperoxidase activity in milk is correlated with somatic cell count in dairy cows.
    Isobe N; Kubota H; Yamasaki A; Yoshimura Y
    J Dairy Sci; 2011 Aug; 94(8):3868-74. PubMed ID: 21787923
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electron paramagnetic resonance spectroscopy of lactoperoxidase complexes: clarification of hyperfine splitting for the NO adduct of lactoperoxidase.
    Lukat GS; Rodgers KR; Goff HM
    Biochemistry; 1987 Nov; 26(22):6927-32. PubMed ID: 2827739
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Front-face fluorescence spectroscopy allows the characterization of mild heat treatments applied to milk. Relations with the denaturation of milk proteins.
    Kulmyrzaev AA; Levieux D; Dufour E
    J Agric Food Chem; 2005 Feb; 53(3):502-7. PubMed ID: 15686393
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A differential scanning calorimetric study of the thermal denaturation of bovine beta-lactoglobulin. Thermal behaviour at temperatures up to 100 degrees C.
    de Wit JN; Swinkels GA
    Biochim Biophys Acta; 1980 Jul; 624(1):40-50. PubMed ID: 7407243
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A sensitive, high-throughput fluorescent method for the determination of lactoperoxidase activities in milk and comparison in human, bovine, goat and camel milk.
    Zou Z; Bauland J; Hewavitharana AK; Al-Shehri SS; Duley JA; Cowley DM; Koorts P; Shaw PN; Bansal N
    Food Chem; 2021 Mar; 339():128090. PubMed ID: 33152878
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reactivation of alkaline phosphatase in ultra high-temperature, short-time processed liquid milk products.
    Murthy GK; Cox S; Kaylor L
    J Dairy Sci; 1976 Oct; 59(10):1699-710. PubMed ID: 988062
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The self-association and thermal denaturation of caprine and bovine β-lactoglobulin.
    Crowther JM; Allison JR; Smolenski GA; Hodgkinson AJ; Jameson GB; Dobson RCJ
    Eur Biophys J; 2018 Oct; 47(7):739-750. PubMed ID: 29663020
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative study of denaturation of whey protein isolate (WPI) in convective air drying and isothermal heat treatment processes.
    Haque MA; Aldred P; Chen J; Barrow CJ; Adhikari B
    Food Chem; 2013 Nov; 141(2):702-11. PubMed ID: 23790837
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modification of IgE binding during heat processing of the cow's milk allergen beta-lactoglobulin.
    Ehn BM; Ekstrand B; Bengtsson U; Ahlstedt S
    J Agric Food Chem; 2004 Mar; 52(5):1398-403. PubMed ID: 14995152
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multi-state thermal unfolding and aggregation of beta-lactoglobulin A.
    Qi XL; Brownlow S; Holt C; Sellers P
    Biochem Soc Trans; 1995 Feb; 23(1):74S. PubMed ID: 7758792
    [No Abstract]   [Full Text] [Related]  

  • 53. Effect of high-pressure processing on activity and structure of alkaline phosphatase and lactate dehydrogenase in buffer and milk.
    Kouassi GK; Anantheswaran RC; Knabel SJ; Floros JD
    J Agric Food Chem; 2007 Nov; 55(23):9520-9. PubMed ID: 17944537
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of continuous flow microwave treatment on chemical and microbiological characteristics of milk.
    Villamiel M; López-Fandiño R; Corzo N; Martínez-Castro I; Olano A
    Z Lebensm Unters Forsch; 1996 Jan; 202(1):15-8. PubMed ID: 8717091
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of milk fat content on the performance of ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium and Listeria monocytogenes.
    Kim SS; Kang DH
    J Appl Microbiol; 2015 Aug; 119(2):475-86. PubMed ID: 26043029
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The quantitative measurement of whey proteins using polyacrylamide-gel electrophoresis.
    Hillier RM
    J Dairy Res; 1976 Jun; 43(2):259-65. PubMed ID: 986406
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of kappa-casein and beta-lactoglobulin loci on milk production traits and reproductive performance of Holstein cows.
    Tsiaras AM; Bargouli GG; Banos G; Boscos CM
    J Dairy Sci; 2005 Jan; 88(1):327-34. PubMed ID: 15591397
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assessment of pasteurisation of edible insects using enzymatic tests (activity of alkaline phosphatase and lactoperoxidase) applied in dairy products.
    Grabowski NT; Franco Olivas J; Galván Lozano D; Kehrenberg C; Aguilar DG
    Food Sci Technol Int; 2018 Dec; 24(8):699-704. PubMed ID: 30019591
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization by ionization mass spectrometry of lactosyl beta-lactoglobulin conjugates formed during heat treatment of milk and whey and identification of one lactose-binding site.
    Leonil J; Molle D; Fauquant J; Maubois JL; Pearce RJ; Bouhallab S
    J Dairy Sci; 1997 Oct; 80(10):2270-81. PubMed ID: 9361199
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of high-pressure treatment at various temperatures on indigenous proteolytic enzymes and whey protein denaturation in bovine milk.
    Moatsou G; Bakopanos C; Katharios D; Katsaros G; Kandarakis I; Taoukis P; Politis I
    J Dairy Res; 2008 Aug; 75(3):262-9. PubMed ID: 18513457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.