These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 12464114)
1. Activation of the cannabinoid CB1 receptor may involve a W6 48/F3 36 rotamer toggle switch. Singh R; Hurst DP; Barnett-Norris J; Lynch DL; Reggio PH; Guarnieri F J Pept Res; 2002 Dec; 60(6):357-70. PubMed ID: 12464114 [TBL] [Abstract][Full Text] [Related]
2. Structural mimicry in class A G protein-coupled receptor rotamer toggle switches: the importance of the F3.36(201)/W6.48(357) interaction in cannabinoid CB1 receptor activation. McAllister SD; Hurst DP; Barnett-Norris J; Lynch D; Reggio PH; Abood ME J Biol Chem; 2004 Nov; 279(46):48024-37. PubMed ID: 15326174 [TBL] [Abstract][Full Text] [Related]
3. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors. Bhattacharya S; Hall SE; Vaidehi N J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482 [TBL] [Abstract][Full Text] [Related]
4. N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A) interaction with LYS 3.28(192) is crucial for its inverse agonism at the cannabinoid CB1 receptor. Hurst DP; Lynch DL; Barnett-Norris J; Hyatt SM; Seltzman HH; Zhong M; Song ZH; Nie J; Lewis D; Reggio PH Mol Pharmacol; 2002 Dec; 62(6):1274-87. PubMed ID: 12435794 [TBL] [Abstract][Full Text] [Related]
5. Understanding the role of the CB1 toggle switch in interaction networks using molecular dynamics simulation. Ji S; Yang W; Yu W Sci Rep; 2021 Nov; 11(1):22369. PubMed ID: 34785728 [TBL] [Abstract][Full Text] [Related]
6. Modeling of ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic β 2 AR. Latek D; Kolinski M; Ghoshdastider U; Debinski A; Bombolewski R; Plazinska A; Jozwiak K; Filipek S J Mol Model; 2011 Sep; 17(9):2353-66. PubMed ID: 21365223 [TBL] [Abstract][Full Text] [Related]
7. An aromatic microdomain at the cannabinoid CB(1) receptor constitutes an agonist/inverse agonist binding region. McAllister SD; Rizvi G; Anavi-Goffer S; Hurst DP; Barnett-Norris J; Lynch DL; Reggio PH; Abood ME J Med Chem; 2003 Nov; 46(24):5139-52. PubMed ID: 14613317 [TBL] [Abstract][Full Text] [Related]
8. Beta2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. Shi L; Liapakis G; Xu R; Guarnieri F; Ballesteros JA; Javitch JA J Biol Chem; 2002 Oct; 277(43):40989-96. PubMed ID: 12167654 [TBL] [Abstract][Full Text] [Related]
9. Structural domains of the CB1 cannabinoid receptor that contribute to constitutive activity and G-protein sequestration. Nie J; Lewis DL J Neurosci; 2001 Nov; 21(22):8758-64. PubMed ID: 11698587 [TBL] [Abstract][Full Text] [Related]
10. A critical role for a tyrosine residue in the cannabinoid receptors for ligand recognition. McAllister SD; Tao Q; Barnett-Norris J; Buehner K; Hurst DP; Guarnieri F; Reggio PH; Nowell Harmon KW; Cabral GA; Abood ME Biochem Pharmacol; 2002 Jun; 63(12):2121-36. PubMed ID: 12110371 [TBL] [Abstract][Full Text] [Related]
11. Conformational memories and the endocannabinoid binding site at the cannabinoid CB1 receptor. Barnett-Norris J; Hurst DP; Lynch DL; Guarnieri F; Makriyannis A; Reggio PH J Med Chem; 2002 Aug; 45(17):3649-59. PubMed ID: 12166938 [TBL] [Abstract][Full Text] [Related]
12. Construction of a 3D model of the cannabinoid CB1 receptor: determination of helix ends and helix orientation. Bramblett RD; Panu AM; Ballesteros JA; Reggio PH Life Sci; 1995; 56(23-24):1971-82. PubMed ID: 7776821 [TBL] [Abstract][Full Text] [Related]
13. Free energies of amino acid side-chain rotamers in alpha-helices, beta-sheets and alpha-helix N-caps. Stapley BJ; Doig AJ J Mol Biol; 1997 Sep; 272(3):456-64. PubMed ID: 9325103 [TBL] [Abstract][Full Text] [Related]
14. A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor. Hurst DP; Grossfield A; Lynch DL; Feller S; Romo TD; Gawrisch K; Pitman MC; Reggio PH J Biol Chem; 2010 Jun; 285(23):17954-64. PubMed ID: 20220143 [TBL] [Abstract][Full Text] [Related]
15. The local environment at the cytoplasmic end of TM6 of the mu opioid receptor differs from those of rhodopsin and monoamine receptors: introduction of an ionic lock between the cytoplasmic ends of helices 3 and 6 by a L6.30(275)E mutation inactivates the mu opioid receptor and reduces the constitutive activity of its T6.34(279)K mutant. Huang P; Visiers I; Weinstein H; Liu-Chen LY Biochemistry; 2002 Oct; 41(40):11972-80. PubMed ID: 12356297 [TBL] [Abstract][Full Text] [Related]
16. Predicted structures of agonist and antagonist bound complexes of adenosine A3 receptor. Kim SK; Riley L; Abrol R; Jacobson KA; Goddard WA Proteins; 2011 Jun; 79(6):1878-97. PubMed ID: 21488099 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the amino acid residues in the sixth transmembrane domains accessible in the binding-site crevices of mu, delta, and kappa opioid receptors. Xu W; Li J; Chen C; Huang P; Weinstein H; Javitch JA; Shi L; de Riel JK; Liu-Chen LY Biochemistry; 2001 Jul; 40(27):8018-29. PubMed ID: 11434771 [TBL] [Abstract][Full Text] [Related]
18. Homology model of the CB1 cannabinoid receptor: sites critical for nonclassical cannabinoid agonist interaction. Shim JY; Welsh WJ; Howlett AC Biopolymers; 2003; 71(2):169-89. PubMed ID: 12767117 [TBL] [Abstract][Full Text] [Related]
19. Structure of the third intracellular loop of the human cannabinoid 1 receptor. Ulfers AL; McMurry JL; Kendall DA; Mierke DF Biochemistry; 2002 Sep; 41(38):11344-50. PubMed ID: 12234176 [TBL] [Abstract][Full Text] [Related]
20. Functional residues essential for the activation of the CB1 cannabinoid receptor. Shim JY; Padgett L Methods Enzymol; 2013; 520():337-55. PubMed ID: 23332708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]