These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
482 related articles for article (PubMed ID: 12464185)
21. [Changes in the content of riboflavin and its coenzyme in tissues during the aging of rats]. Leclerc J; Miller ML Ann Nutr Metab; 1981; 25(1):20-6. PubMed ID: 7259107 [TBL] [Abstract][Full Text] [Related]
22. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin. Grill S; Busenbender S; Pfeiffer M; Köhler U; Mack M J Bacteriol; 2008 Mar; 190(5):1546-53. PubMed ID: 18156273 [TBL] [Abstract][Full Text] [Related]
23. A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria. Miranda-Ríos J; Navarro M; Soberón M Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9736-41. PubMed ID: 11470904 [TBL] [Abstract][Full Text] [Related]
24. Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Rodionov DA; Vitreschak AG; Mironov AA; Gelfand MS Nucleic Acids Res; 2003 Dec; 31(23):6748-57. PubMed ID: 14627808 [TBL] [Abstract][Full Text] [Related]
25. Mechanisms underlying the differential effects of ethanol on the bioavailability of riboflavin and flavin adenine dinucleotide. Pinto J; Huang YP; Rivlin RS J Clin Invest; 1987 May; 79(5):1343-8. PubMed ID: 3033022 [TBL] [Abstract][Full Text] [Related]
26. Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms. Rodionov DA; Vitreschak AG; Mironov AA; Gelfand MS J Biol Chem; 2002 Dec; 277(50):48949-59. PubMed ID: 12376536 [TBL] [Abstract][Full Text] [Related]
27. trp RNA-binding attenuation protein (TRAP)-trp leader RNA interactions mediate translational as well as transcriptional regulation of the Bacillus subtilis trp operon. Merino E; Babitzke P; Yanofsky C J Bacteriol; 1995 Nov; 177(22):6362-70. PubMed ID: 7592410 [TBL] [Abstract][Full Text] [Related]
28. Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism. Choonee N; Even S; Zig L; Putzer H Nucleic Acids Res; 2007; 35(5):1578-88. PubMed ID: 17289755 [TBL] [Abstract][Full Text] [Related]
29. Bacterial flavin mononucleotide riboswitches as targets for flavin analogs. Pedrolli DB; Mack M Methods Mol Biol; 2014; 1103():165-76. PubMed ID: 24318894 [TBL] [Abstract][Full Text] [Related]
30. Riboflavin Transporters RFVT/SLC52A Mediate Translocation of Riboflavin, Rather than FMN or FAD, across Plasma Membrane. Jin C; Yao Y; Yonezawa A; Imai S; Yoshimatsu H; Otani Y; Omura T; Nakagawa S; Nakagawa T; Matsubara K Biol Pharm Bull; 2017; 40(11):1990-1995. PubMed ID: 29093349 [TBL] [Abstract][Full Text] [Related]
31. [Unusual structure of the regulatory region of the riboflavin biosynthesis operon in Bacillus subtilis]. Mironov VN; Perumov DA; Kraev AS; Stepanov AI; Skriabin KG Mol Biol (Mosk); 1990; 24(1):256-61. PubMed ID: 2112225 [TBL] [Abstract][Full Text] [Related]
32. The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism. Burgess CM; Slotboom DJ; Geertsma ER; Duurkens RH; Poolman B; van Sinderen D J Bacteriol; 2006 Apr; 188(8):2752-60. PubMed ID: 16585736 [TBL] [Abstract][Full Text] [Related]
33. Hydrolysis of FMN and FAD by alkaline phosphatase of the intestinal brush-border membrane. Daniel H; Binninger E; Rehner G Int J Vitam Nutr Res; 1983; 53(1):109-14. PubMed ID: 6853053 [TBL] [Abstract][Full Text] [Related]
34. Alteration of Flavin Cofactor Homeostasis in Human Neuromuscular Pathologies. Tolomeo M; Nisco A; Barile M Methods Mol Biol; 2021; 2280():275-295. PubMed ID: 33751442 [TBL] [Abstract][Full Text] [Related]
35. Reconstitution of Bacillus subtilis trp attenuation in vitro with TRAP, the trp RNA-binding attenuation protein. Babitzke P; Yanofsky C Proc Natl Acad Sci U S A; 1993 Jan; 90(1):133-7. PubMed ID: 7678334 [TBL] [Abstract][Full Text] [Related]
36. Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism. Turner RJ; Lu Y; Switzer RL J Bacteriol; 1994 Jun; 176(12):3708-22. PubMed ID: 8206849 [TBL] [Abstract][Full Text] [Related]
37. Effects of riboflavin deficiency upon concentrations of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in Novikoff hepatoma in rats. Rivlin RS; Hornibrook R; Osnos M Cancer Res; 1973 Nov; 33(11):3019-23. PubMed ID: 4355989 [No Abstract] [Full Text] [Related]
38. The physiological role of riboflavin transporter and involvement of FMN-riboswitch in its gene expression in Corynebacterium glutamicum. Takemoto N; Tanaka Y; Inui M; Yukawa H Appl Microbiol Biotechnol; 2014 May; 98(9):4159-68. PubMed ID: 24531272 [TBL] [Abstract][Full Text] [Related]
39. Truncated FAD synthetase for direct biocatalytic conversion of riboflavin and analogs to their corresponding flavin mononucleotides. Iamurri SM; Daugherty AB; Edmondson DE; Lutz S Protein Eng Des Sel; 2013 Dec; 26(12):791-5. PubMed ID: 24170887 [TBL] [Abstract][Full Text] [Related]
40. Rational engineering of transcriptional riboswitches leads to enhanced metabolite levels in Bacillus subtilis. Boumezbeur AH; Bruer M; Stoecklin G; Mack M Metab Eng; 2020 Sep; 61():58-68. PubMed ID: 32413407 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]