These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 12464331)

  • 1. Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms.
    Manshanden I; De Munck JC; Simon NR; Lopes da Silva FH
    Clin Neurophysiol; 2002 Dec; 113(12):1937-47. PubMed ID: 12464331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships between sleep spindles and activities of the cerebral cortex after hemispheric stroke as determined by simultaneous EEG and MEG recordings.
    Urakami Y
    J Clin Neurophysiol; 2009 Aug; 26(4):248-56. PubMed ID: 19584747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional localization of brain sources using EEG and/or MEG data: volume conductor and source models.
    Lopes da Silva F
    Magn Reson Imaging; 2004 Dec; 22(10):1533-8. PubMed ID: 15707802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between sleep spindles and activities of cerebral cortex as determined by simultaneous EEG and MEG recording.
    Urakami Y
    J Clin Neurophysiol; 2008 Feb; 25(1):13-24. PubMed ID: 18303556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current source density distribution of sleep spindles in humans as found by synthetic aperture magnetometry.
    Ishii R; Dziewas R; Chau W; Sörös P; Okamoto H; Gunji A; Pantev C
    Neurosci Lett; 2003 Apr; 340(1):25-8. PubMed ID: 12648750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grouping of MEG gamma oscillations by EEG sleep spindles.
    Ayoub A; Mölle M; Preissl H; Born J
    Neuroimage; 2012 Jan; 59(2):1491-500. PubMed ID: 21893206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dipole modelling of MEG rhythms in time and frequency domains.
    Salmelin RH; Hämäläinen MS
    Brain Topogr; 1995; 7(3):251-7. PubMed ID: 7599024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergent cortical generators of MEG and EEG during human sleep spindles suggested by distributed source modeling.
    Dehghani N; Cash SS; Chen CC; Hagler DJ; Huang M; Dale AM; Halgren E
    PLoS One; 2010 Jul; 5(7):e11454. PubMed ID: 20628643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetoencephalographic characterization of sleep spindles in humans.
    Shih JJ; Weisend MP; Davis JT; Huang M
    J Clin Neurophysiol; 2000 Mar; 17(2):224-31. PubMed ID: 10831113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetoencephalography demonstrates multiple asynchronous generators during human sleep spindles.
    Dehghani N; Cash SS; Rossetti AO; Chen CC; Halgren E
    J Neurophysiol; 2010 Jul; 104(1):179-88. PubMed ID: 20427615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generator sites of spontaneous MEG activity during sleep.
    Lu ST; Kajola M; Joutsiniemi SL; Knuutila J; Hari R
    Electroencephalogr Clin Neurophysiol; 1992 Mar; 82(3):182-96. PubMed ID: 1371438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between rhythmic activities during a mental task and sleep spindles: a correlative analysis.
    Suetsugi M; Mizuki Y; Ushijima I; Watanabe Y
    Prog Neuropsychopharmacol Biol Psychiatry; 2002 May; 26(4):631-7. PubMed ID: 12188093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Source analysis of EEG oscillations using high-resolution EEG and MEG.
    Srinivasan R; Winter WR; Nunez PL
    Prog Brain Res; 2006; 159():29-42. PubMed ID: 17071222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency diversity of posterior oscillatory activity in human revealed by spatial filtered MEG.
    Ishii R; Canuet L; Aoki Y; Ikeda S; Hata M; Takahashi H; Nakahachi T; Gunji A; Iwase M; Takeda M
    J Integr Neurosci; 2013 Sep; 12(3):343-53. PubMed ID: 24070058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetoencephalography is more successful for screening and localizing frontal lobe epilepsy than electroencephalography.
    Ossenblok P; de Munck JC; Colon A; Drolsbach W; Boon P
    Epilepsia; 2007 Nov; 48(11):2139-49. PubMed ID: 17662061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic detection of sleep spindles in normal subjects.
    Nakasato N; Kado H; Nakanishi M; Koyanagi M; Kasai N; Niizuma H; Yoshimoto T
    Electroencephalogr Clin Neurophysiol; 1990 Aug; 76(2):123-30. PubMed ID: 1697240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Source estimation of spontaneous MEG activity and auditory evoked responses in normal subjects during sleep.
    Iramina K; Ueno S
    Brain Topogr; 1996; 8(3):297-301. PubMed ID: 8728422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Source models of sleep spindles using MEG and EEG measurements.
    Yoshida H; Iramina K; Ueno S
    Brain Topogr; 1996; 8(3):303-7. PubMed ID: 8728423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG and MEG source analysis of single and averaged interictal spikes reveals intrinsic epileptogenicity in focal cortical dysplasia.
    Bast T; Oezkan O; Rona S; Stippich C; Seitz A; Rupp A; Fauser S; Zentner J; Rating D; Scherg M
    Epilepsia; 2004 Jun; 45(6):621-31. PubMed ID: 15144427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topographical frequency dynamics within EEG and MEG sleep spindles.
    Dehghani N; Cash SS; Halgren E
    Clin Neurophysiol; 2011 Feb; 122(2):229-35. PubMed ID: 20637689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.