These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 12465291)
1. Thermal heating of human tissue induced by electromagnetic fields of magnetic resonance imaging. Thiele JP; Golombeck MA; Dössel O Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():743-6. PubMed ID: 12465291 [TBL] [Abstract][Full Text] [Related]
2. Magnetic resonance imaging with implanted neurostimulators: numerical calculation of the induced heating. Golombeck MA; Thiele J; Dössel O Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():660-3. PubMed ID: 12465267 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of RF heating on humerus implant in phantoms during 1.5T MR imaging and comparisons with electromagnetic simulation. Muranaka H; Horiguchi T; Usui S; Ueda Y; Nakamura O; Ikeda F; Iwakura K; Nakaya G Magn Reson Med Sci; 2006 Jul; 5(2):79-88. PubMed ID: 17008764 [TBL] [Abstract][Full Text] [Related]
4. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots. Busch MH; Vollmann W; Grönemeyer DH Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878 [TBL] [Abstract][Full Text] [Related]
5. Numerical evaluation of heating of the human head due to magnetic resonance imaging. Nguyen UD; Brown JS; Chang IA; Krycia J; Mirotznik MS IEEE Trans Biomed Eng; 2004 Aug; 51(8):1301-9. PubMed ID: 15311814 [TBL] [Abstract][Full Text] [Related]
6. Numerical calculations of switched magnetic field gradients during magnetic resonance imaging. Rick J; Golombeck MA; Dössel O Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():739-42. PubMed ID: 12465290 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of MRI RF electromagnetic field induced heating near leads of cochlear implants. Zeng Q; Wang Q; Zheng J; Kainz W; Chen J Phys Med Biol; 2018 Jul; 63(13):135020. PubMed ID: 29893289 [TBL] [Abstract][Full Text] [Related]
8. Experimental validation of hyperthermia SAR treatment planning using MR B1+ imaging. Van den Berg CA; Bartels LW; De Leeuw AA; Lagendijk JJ; Van de Kamer JB Phys Med Biol; 2004 Nov; 49(22):5029-42. PubMed ID: 15609556 [TBL] [Abstract][Full Text] [Related]
9. Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging. Kikuchi S; Saito K; Takahashi M; Ito K Phys Med Biol; 2010 Apr; 55(8):2411-26. PubMed ID: 20360633 [TBL] [Abstract][Full Text] [Related]
10. A distributed equivalent magnetic current based FDTD method for the calculation of E-fields induced by gradient coils. Liu F; Crozier S J Magn Reson; 2004 Aug; 169(2):323-7. PubMed ID: 15261629 [TBL] [Abstract][Full Text] [Related]
11. In silico evaluation of the thermal stress induced by MRI switched gradient fields in patients with metallic hip implant. Arduino A; Bottauscio O; Brühl R; Chiampi M; Zilberti L Phys Med Biol; 2019 Dec; 64(24):245006. PubMed ID: 31683262 [TBL] [Abstract][Full Text] [Related]
12. Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects. Collins CM; Wang Z Magn Reson Med; 2011 May; 65(5):1470-82. PubMed ID: 21381106 [TBL] [Abstract][Full Text] [Related]
13. A Review of Numerical Simulation and Analytical Modeling for Medical Devices Safety in MRI. Kabil J; Belguerras L; Trattnig S; Pasquier C; Felblinger J; Missoffe A Yearb Med Inform; 2016 Nov; (1):152-158. PubMed ID: 27830244 [TBL] [Abstract][Full Text] [Related]
14. Assessing the Electromagnetic Fields Generated By a Radiofrequency MRI Body Coil at 64 MHz: Defeaturing Versus Accuracy. Lucano E; Liberti M; Mendoza GG; Lloyd T; Iacono MI; Apollonio F; Wedan S; Kainz W; Angelone LM IEEE Trans Biomed Eng; 2016 Aug; 63(8):1591-1601. PubMed ID: 26685220 [TBL] [Abstract][Full Text] [Related]
15. Modeling of radio-frequency induced currents on lead wires during MR imaging using a modified transmission line method. Acikel V; Atalar E Med Phys; 2011 Dec; 38(12):6623-32. PubMed ID: 22149844 [TBL] [Abstract][Full Text] [Related]
16. Parallel transmit excitation at 1.5 T based on the minimization of a driving function for device heating. Gudino N; Sonmez M; Yao Z; Baig T; Nielles-Vallespin S; Faranesh AZ; Lederman RJ; Martens M; Balaban RS; Hansen MS; Griswold MA Med Phys; 2015 Jan; 42(1):359-71. PubMed ID: 25563276 [TBL] [Abstract][Full Text] [Related]
17. Development of a cost-effective and MRI compatible temperature measurement system. Häfner J; Golombeck MA; Dössel O Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():664-7. PubMed ID: 12465268 [TBL] [Abstract][Full Text] [Related]
18. Numerical evaluation of RF-induced heating for various esophageal stent designs under MRI 1.5 Tesla system. Ji X; Zheng J; Chen J Electromagn Biol Med; 2017; 36(4):379-386. PubMed ID: 29087742 [TBL] [Abstract][Full Text] [Related]
19. An improved quasi-static finite-difference scheme for induced field evaluation in MRI based on the biconjugate gradient method. Wang H; Liu F; Trakic A; Xia L; Crozier S Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():487-90. PubMed ID: 18001995 [TBL] [Abstract][Full Text] [Related]
20. Experimental and numerical assessment of MRI-induced temperature change and SAR distributions in phantoms and in vivo. Oh S; Webb AG; Neuberger T; Park B; Collins CM Magn Reson Med; 2010 Jan; 63(1):218-23. PubMed ID: 19785018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]