These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12465328)

  • 1. [Expanding control possibilities of myoelectric hand prostheses].
    Reischl M; Mikut R; Pylatiuk C; Schulz S
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():868-70. PubMed ID: 12465328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grasp specific and user friendly interface design for myoelectric hand prostheses.
    Mohammadi A; Lavranos J; Howe R; Choong P; Oetomo D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1621-1626. PubMed ID: 28814052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Possibilities of myoelectric control of artificial limb prostheses].
    Kitzenmaier P; Boenick U
    Biomed Tech (Berl); 1992; 37(7-8):170-80. PubMed ID: 1391603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of Transient Myoelectric Signals for the Control of Multi-Grasp Hand Prostheses.
    Kanitz G; Cipriani C; Edin BB
    IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1756-1764. PubMed ID: 30072331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intelligent multifunction myoelectric control of hand prostheses.
    Light CM; Chappell PH; Hudgins B; Engelhart K
    J Med Eng Technol; 2002; 26(4):139-46. PubMed ID: 12396328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myoelectric hand prosthesis force control through servo motor current feedback.
    Sono TS; Menegaldo LL
    Artif Organs; 2009 Oct; 33(10):871-6. PubMed ID: 19681841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real time microcontroller implementation of an adaptive myoelectric filter.
    Bagwell PJ; Chappell PH
    Med Eng Phys; 1995 Mar; 17(2):151-60. PubMed ID: 7735646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time myoelectric decoding of individual finger movements for a virtual target task.
    Smith RJ; Huberdeau D; Tenore F; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2376-9. PubMed ID: 19965192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.
    Vasan G; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Movement characteristics of upper extremity prostheses during basic goal-directed tasks.
    Bouwsema H; van der Sluis CK; Bongers RM
    Clin Biomech (Bristol, Avon); 2010 Jul; 25(6):523-9. PubMed ID: 20362374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients.
    Tkach DC; Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):727-34. PubMed ID: 24760931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voluntary phantom hand and finger movements in transhumerai amputees could be used to naturally control polydigital prostheses.
    Jarrasse N; Nicol C; Richer F; Touillet A; Martinet N; Paysant J; De Graaf JB
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1239-1245. PubMed ID: 28813991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A synergy-driven approach to a myoelectric hand.
    Godfrey SB; Ajoudani A; Catalano M; Grioli G; Bicchi A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650377. PubMed ID: 24187196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain activation during manipulation of the myoelectric prosthetic hand: a functional magnetic resonance imaging study.
    Maruishi M; Tanaka Y; Muranaka H; Tsuji T; Ozawa Y; Imaizumi S; Miyatani M; Kawahara J
    Neuroimage; 2004 Apr; 21(4):1604-11. PubMed ID: 15050584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recording of electric signal passing through a pylon in direct skeletal attachment of leg prostheses with neuromuscular control.
    Pitkin M; Cassidy C; Muppavarapu R; Edell D
    IEEE Trans Biomed Eng; 2012 May; 59(5):1349-53. PubMed ID: 22345523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis.
    Dosen S; Markovic M; Somer K; Graimann B; Farina D
    J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Context-dependent adaptation improves robustness of myoelectric control for upper-limb prostheses.
    Patel GK; Hahne JM; Castellini C; Farina D; Dosen S
    J Neural Eng; 2017 Oct; 14(5):056016. PubMed ID: 28691694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intuitive real-time control strategy for high-density myoelectric hand prosthesis using deep and transfer learning.
    Tam S; Boukadoum M; Campeau-Lecours A; Gosselin B
    Sci Rep; 2021 May; 11(1):11275. PubMed ID: 34050220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.