These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 12465841)
21. Analysing sludge balance in activated sludge systems with a novel mass transport model. Patziger M; Kainz H; Hunze M; Józsa J Water Sci Technol; 2008; 57(9):1413-9. PubMed ID: 18496007 [TBL] [Abstract][Full Text] [Related]
22. Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants. Morgan-Sagastume F; Pratt S; Karlsson A; Cirne D; Lant P; Werker A Bioresour Technol; 2011 Feb; 102(3):3089-97. PubMed ID: 21075621 [TBL] [Abstract][Full Text] [Related]
23. Effect of enzymatic pretreatment on solubilization and volatile fatty acid production in fermentation of food waste. Kim HJ; Choi YG; Kim GD; Kim SH; Chung TH Water Sci Technol; 2005; 52(10-11):51-9. PubMed ID: 16459776 [TBL] [Abstract][Full Text] [Related]
24. Effect of solids retention time and wastewater characteristics on biological phosphorus removal. Henze M; Aspegren H; Jansen Jl; Nielsen PH; Lee N Water Sci Technol; 2002; 45(6):137-44. PubMed ID: 11989867 [TBL] [Abstract][Full Text] [Related]
25. Steady-state analysis of activated sludge processes with a settler model including sludge compression. Diehl S; Zambrano J; Carlsson B Water Res; 2016 Jan; 88():104-116. PubMed ID: 26476681 [TBL] [Abstract][Full Text] [Related]
26. An improved 1D reactive Bürger-Diehl settler model for secondary settling tank denitrification. Kirim G; Torfs E; Vanrolleghem PA Water Environ Res; 2022 Dec; 94(12):e10825. PubMed ID: 36518000 [TBL] [Abstract][Full Text] [Related]
27. Modeling acidogenic and sulfate-reducing processes for the determination of fermentable fractions in wastewater. Ruel SM; Comeau Y; Ginestet P; Héduit A Biotechnol Bioeng; 2002 Dec; 80(5):525-36. PubMed ID: 12355463 [TBL] [Abstract][Full Text] [Related]
28. Cost-effective upgrading of a biological wastewater treatment plant by using lamella separators with bypass operation. Jardin N; Rath L; Schönfeld A; Grünebaum T Water Sci Technol; 2008; 57(10):1619-25. PubMed ID: 18520020 [TBL] [Abstract][Full Text] [Related]
29. Biological phosphorus removal from a phosphorus-rich dairy processing wastewater. Bickers PO; Bhamidimarri R; Shepherd J; Russell J Water Sci Technol; 2003; 48(8):43-51. PubMed ID: 14682569 [TBL] [Abstract][Full Text] [Related]
30. Removal of organic matter and nitrogen from distillery wastewater by a combination of methane fermentation and denitrification/nitrification processes. Li J; Zhang ZJ; Li ZR; Huang GY; Abe N J Environ Sci (China); 2006; 18(4):654-9. PubMed ID: 17078541 [TBL] [Abstract][Full Text] [Related]
31. Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation. Xiao B; Liu J J Hazard Mater; 2009 Aug; 168(1):163-7. PubMed ID: 19278778 [TBL] [Abstract][Full Text] [Related]
32. Influence of pH and temperature on soluble substrate generation with primary sludge fermentation. Cokgor EU; Oktay S; Tas DO; Zengin GE; Orhon D Bioresour Technol; 2009 Jan; 100(1):380-6. PubMed ID: 18586487 [TBL] [Abstract][Full Text] [Related]
33. Optimisation of Noosa BNR plant to improve performance and reduce operating costs. Thomas M; Wright P; Blackall L; Urbain V; Keller J Water Sci Technol; 2003; 47(12):141-8. PubMed ID: 12926681 [TBL] [Abstract][Full Text] [Related]
34. Enhancement of settling tank capacity using a new type of tube settler. Fujisaki K Water Sci Technol; 2010; 62(6):1213-20. PubMed ID: 20861533 [TBL] [Abstract][Full Text] [Related]
35. A new approach towards modelling of the carbon degradation cycle at two-stage activated sludge plants. Winkler S; Müller-Rechberger H; Nowak O; Svardal K; Wandl G Water Sci Technol; 2001; 43(7):19-27. PubMed ID: 11385846 [TBL] [Abstract][Full Text] [Related]
36. The EAWAG Bio-P module for activated sludge model No. 3. Siegrist H; Rieger L; Koch G; Kühni M; Gujer W Water Sci Technol; 2002; 45(6):61-76. PubMed ID: 11989879 [TBL] [Abstract][Full Text] [Related]
37. Start-up alternatives and performance of an UASB pilot plant treating diluted municipal wastewater at low temperature. Alvarez JA; Ruiz I; Gómez M; Presas J; Soto M Bioresour Technol; 2006 Sep; 97(14):1640-9. PubMed ID: 16171991 [TBL] [Abstract][Full Text] [Related]
38. Structure-function dynamics and modeling analysis of the micro-environment of activated sludge floc. Li B; Bishop P Water Sci Technol; 2003; 47(11):267-73. PubMed ID: 12906299 [TBL] [Abstract][Full Text] [Related]
39. Use of phosphorus release batch tests for modelling an EBPR pilot plant. Tykesson E; Aspegren H; Henze M; Nielsen PH; Jansen Jl Water Sci Technol; 2002; 45(6):99-106. PubMed ID: 11989882 [TBL] [Abstract][Full Text] [Related]
40. Improvement of primary settling performance with activated sludge. Yetis U; Tarlan E Environ Technol; 2002 Apr; 23(4):363-72. PubMed ID: 12088362 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]