BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12465971)

  • 1. Hydroxylation of methane by non-heme diiron enzymes: molecular orbital analysis of C-H bond activation by reactive intermediate Q.
    Baik MH; Gherman BF; Friesner RA; Lippard SJ
    J Am Chem Soc; 2002 Dec; 124(49):14608-15. PubMed ID: 12465971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DFT study of the mechanism for methane hydroxylation by soluble methane monooxygenase (sMMO): effects of oxidation state, spin state, and coordination number.
    Huang SP; Shiota Y; Yoshizawa K
    Dalton Trans; 2013 Jan; 42(4):1011-23. PubMed ID: 23108153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-step concerted mechanism for methane hydroxylation on the diiron active site of soluble methane monooxygenase.
    Yoshizawa K
    J Inorg Biochem; 2000 Jan; 78(1):23-34. PubMed ID: 10714702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A non-radical mechanism for methane hydroxylation at the diiron active site of soluble methane monooxygenase.
    Yoshizawa K; Yumura T
    Chemistry; 2003 May; 9(10):2347-58. PubMed ID: 12772310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dioxygen activation in soluble methane monooxygenase.
    Tinberg CE; Lippard SJ
    Acc Chem Res; 2011 Apr; 44(4):280-8. PubMed ID: 21391602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate-dependent H/D kinetic isotope effects and the role of the di(μ-oxo)diiron(IV) core in soluble methane monooxygenase: a theoretical study.
    Mai BK; Kim Y
    Chemistry; 2014 May; 20(21):6532-41. PubMed ID: 24715359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxylation of methane through component interactions in soluble methane monooxygenases.
    Lee SJ
    J Microbiol; 2016 Apr; 54(4):277-82. PubMed ID: 27033202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An abiotic analogue of the diiron(IV)oxo "diamond core" of soluble methane monooxygenase generated by direct activation of O2 in aqueous Fe(II)/EDTA solutions: thermodynamics and electronic structure.
    Bernasconi L; Belanzoni P; Baerends EJ
    Phys Chem Chem Phys; 2011 Sep; 13(33):15272-82. PubMed ID: 21776512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dioxygen activation in methane monooxygenase: a theoretical study.
    Gherman BF; Baik MH; Lippard SJ; Friesner RA
    J Am Chem Soc; 2004 Mar; 126(9):2978-90. PubMed ID: 14995216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of alkane hydroxylation at the non-heme diiron center in methane monooxygenase.
    Guallar V; Gherman BF; Miller WH; Lippard SJ; Friesner RA
    J Am Chem Soc; 2002 Apr; 124(13):3377-84. PubMed ID: 11916423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of the mechanism of alkane hydroxylation and ethylene epoxidation reactions catalyzed by diiron bis-oxo complexes. The effect of substrate molecules.
    Musaev DG; Basch H; Morokuma K
    J Am Chem Soc; 2002 Apr; 124(15):4135-48. PubMed ID: 11942853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of tyrosine residue in methane activation at the dicopper site of particulate methane monooxygenase: a density functional theory study.
    Shiota Y; Juhász G; Yoshizawa K
    Inorg Chem; 2013 Jul; 52(14):7907-17. PubMed ID: 23808646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation reactions performed by soluble methane monooxygenase hydroxylase intermediates H(peroxo) and Q proceed by distinct mechanisms.
    Tinberg CE; Lippard SJ
    Biochemistry; 2010 Sep; 49(36):7902-12. PubMed ID: 20681546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of methane monooxygenase catalysis based on size exclusion and quantum tunneling.
    Zheng H; Lipscomb JD
    Biochemistry; 2006 Feb; 45(6):1685-92. PubMed ID: 16460015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxylation mechanism of methane and its derivatives over designed methane monooxygenase model with peroxo dizinc core.
    Li CQ; Yang HQ; Xu J; Hu CW
    Org Biomol Chem; 2012 May; 10(19):3924-31. PubMed ID: 22495218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay of Electronic Cooperativity and Exchange Coupling in Regulating the Reactivity of Diiron(IV)-oxo Complexes towards C-H and O-H Bond Activation.
    Ansari A; Ansari M; Singha A; Rajaraman G
    Chemistry; 2017 Jul; 23(42):10110-10125. PubMed ID: 28498623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the origin of million-fold reactivity observed for the open core diiron [HO-Fe
    Ansari M; Senthilnathan D; Rajaraman G
    Chem Sci; 2020 Oct; 11(39):10669-10687. PubMed ID: 33209248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stopped-flow Fourier transform infrared spectroscopy of nitromethane oxidation by the diiron(IV) intermediate of methane monooxygenase.
    Muthusamy M; Ambundo EA; George SJ; Lippard SJ; Thorneley RN
    J Am Chem Soc; 2003 Sep; 125(37):11150-1. PubMed ID: 16220908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxylation catalysis by mononuclear and dinuclear iron oxo catalysts: a methane monooxygenase model system versus the Fenton reagent Fe(IV)O(H2O)5(2+).
    Gopakumar G; Belanzoni P; Baerends EJ
    Inorg Chem; 2012 Jan; 51(1):63-75. PubMed ID: 22221279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study.
    Yoshizawa K; Shiota Y
    J Am Chem Soc; 2006 Aug; 128(30):9873-81. PubMed ID: 16866545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.