These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 12465987)

  • 1. Toward the optical tongue: flow-through sensing of tannin-protein interactions based on FTIR spectroscopy.
    Edelmann A; Lendl B
    J Am Chem Soc; 2002 Dec; 124(49):14741-7. PubMed ID: 12465987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Astringency reduction in red wine by whey proteins.
    Jauregi P; Olatujoye JB; Cabezudo I; Frazier RA; Gordon MH
    Food Chem; 2016 May; 199():547-55. PubMed ID: 26776007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding.
    Cala O; Dufourc EJ; Fouquet E; Manigand C; Laguerre M; Pianet I
    Langmuir; 2012 Dec; 28(50):17410-8. PubMed ID: 23173977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of grape and wine tannin interaction with polyproline: implications for red wine astringency.
    McRae JM; Falconer RJ; Kennedy JA
    J Agric Food Chem; 2010 Dec; 58(23):12510-8. PubMed ID: 21070019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of condensed tannins addition on the astringency of red wines.
    Soares S; Sousa A; Mateus N; de Freitas V
    Chem Senses; 2012 Feb; 37(2):191-8. PubMed ID: 22086902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red Wine Dryness Perception Related to Physicochemistry.
    Watrelot AA; Heymann H; Waterhouse AL
    J Agric Food Chem; 2020 Mar; 68(10):2964-2972. PubMed ID: 30983339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheological study of tannin and protein interactions based on model systems.
    Brossard N; Bordeu E; Ibáñez RA; Chen J; Osorio F
    J Texture Stud; 2020 Aug; 51(4):585-592. PubMed ID: 32110834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of wine tannin classification using Fourier transform mid-infrared spectrometry and sensory analysis.
    Fernández K; Labarca X; Bordeu E; Guesalaga A; Agosin E
    Appl Spectrosc; 2007 Nov; 61(11):1163-7. PubMed ID: 18028694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red wine tannins fluidify and precipitate lipid liposomes and bicelles. A role for lipids in wine tasting?
    Furlan AL; Castets A; Nallet F; Pianet I; Grélard A; Dufourc EJ; Géan J
    Langmuir; 2014 May; 30(19):5518-26. PubMed ID: 24787144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects.
    Cala O; Pinaud N; Simon C; Fouquet E; Laguerre M; Dufourc EJ; Pianet I
    FASEB J; 2010 Nov; 24(11):4281-90. PubMed ID: 20605948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency.
    Ma W; Waffo-Teguo P; Jourdes M; Li H; Teissedre PL
    PLoS One; 2016; 11(8):e0161095. PubMed ID: 27518822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of red wine tannins using Fourier-transform mid-infrared spectrometry.
    Fernandez K; Agosin E
    J Agric Food Chem; 2007 Sep; 55(18):7294-300. PubMed ID: 17696445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance liquid chromatography determination of red wine tannin stickiness.
    Revelette MR; Barak JA; Kennedy JA
    J Agric Food Chem; 2014 Jul; 62(28):6626-31. PubMed ID: 24959945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol Concentration Influences the Mechanisms of Wine Tannin Interactions with Poly(L-proline) in Model Wine.
    McRae JM; Ziora ZM; Kassara S; Cooper MA; Smith PA
    J Agric Food Chem; 2015 May; 63(17):4345-52. PubMed ID: 25877783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach.
    Brandão E; Silva MS; García-Estévez I; Williams P; Mateus N; Doco T; de Freitas V; Soares S
    Carbohydr Polym; 2017 Dec; 177():77-85. PubMed ID: 28962798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different phenolic compounds activate distinct human bitter taste receptors.
    Soares S; Kohl S; Thalmann S; Mateus N; Meyerhof W; De Freitas V
    J Agric Food Chem; 2013 Feb; 61(7):1525-33. PubMed ID: 23311874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol.
    Obreque-Slíer E; Peña-Neira A; López-Solís R
    J Agric Food Chem; 2010 Mar; 58(6):3729-35. PubMed ID: 20158256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of wine pectic polysaccharides on the interactions between condensed tannins and salivary proteins.
    Carvalho E; Mateus N; Plet B; Pianet I; Dufourc E; De Freitas V
    J Agric Food Chem; 2006 Nov; 54(23):8936-44. PubMed ID: 17090144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grape tannin catechin and ethanol fluidify oral membrane mimics containing moderate amounts of cholesterol: Implications on wine tasting?
    Furlan AL; Saad A; Dufourc EJ; Géan J
    Biochimie; 2016 Nov; 130():41-48. PubMed ID: 27402289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the Relationship between Red Wine Matrix, Tannin Activity, and Sensory Properties.
    Watrelot AA; Byrnes NK; Heymann H; Kennedy JA
    J Agric Food Chem; 2016 Nov; 64(47):9116-9123. PubMed ID: 27802589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.