BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 12466018)

  • 21. Rapid phosphorylation of glucose-6-phosphate dehydrogenase by casein kinase 2 sustains redox homeostasis under ionizing radiation.
    Hao Y; Ren T; Huang X; Li M; Lee JH; Chen Q; Liu R; Tang Q
    Redox Biol; 2023 Sep; 65():102810. PubMed ID: 37478541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose-6-phosphate dehydrogenase--from oxidative stress to cellular functions and degenerative diseases.
    Ho HY; Cheng ML; Chiu DT
    Redox Rep; 2007; 12(3):109-18. PubMed ID: 17623517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytosolic NADPH homeostasis in glucose-starved procyclic Trypanosoma brucei relies on malic enzyme and the pentose phosphate pathway fed by gluconeogenic flux.
    Allmann S; Morand P; Ebikeme C; Gales L; Biran M; Hubert J; Brennand A; Mazet M; Franconi JM; Michels PA; Portais JC; Boshart M; Bringaud F
    J Biol Chem; 2013 Jun; 288(25):18494-505. PubMed ID: 23665470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function.
    Rawat DK; Hecker P; Watanabe M; Chettimada S; Levy RJ; Okada T; Edwards JG; Gupte SA
    PLoS One; 2012; 7(10):e45365. PubMed ID: 23071515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discovery of Small-Molecule Activators for Glucose-6-Phosphate Dehydrogenase (G6PD) Using Machine Learning Approaches.
    Saddala MS; Lennikov A; Huang H
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32102234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer.
    Yang HC; Wu YH; Yen WC; Liu HY; Hwang TL; Stern A; Chiu DT
    Cells; 2019 Sep; 8(9):. PubMed ID: 31500396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteome-wide dysregulation by glucose-6-phosphate dehydrogenase (G6PD) reveals a novel protective role for G6PD in aflatoxin B₁-mediated cytotoxicity.
    Lin HR; Wu CC; Wu YH; Hsu CW; Cheng ML; Chiu DT
    J Proteome Res; 2013 Jul; 12(7):3434-48. PubMed ID: 23742107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver.
    Frederiks WM; Vizan P; Bosch KS; Vreeling-Sindelárová H; Boren J; Cascante M
    Int J Exp Pathol; 2008 Aug; 89(4):232-40. PubMed ID: 18422600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glucose-6-phosphate dehydrogenase exerts antistress effects independently of its enzymatic activity.
    Jin X; Li X; Li L; Zhong B; Hong Y; Niu J; Li B
    J Biol Chem; 2022 Dec; 298(12):102587. PubMed ID: 36243112
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    White K; Kim MJ; Ding D; Han C; Park HJ; Meneses Z; Tanokura M; Linser P; Salvi R; Someya S
    J Neurosci; 2017 Jun; 37(23):5770-5781. PubMed ID: 28473643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The regulation of the pentose phosphate pathway: Remember Krebs.
    Ramos-Martinez JI
    Arch Biochem Biophys; 2017 Jan; 614():50-52. PubMed ID: 28041936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple NADPH-producing pathways control glutathione (GSH) content in retina.
    Winkler BS; DeSantis N; Solomon F
    Exp Eye Res; 1986 Nov; 43(5):829-47. PubMed ID: 3803464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism.
    Chen L; Zhang Z; Hoshino A; Zheng HD; Morley M; Arany Z; Rabinowitz JD
    Nat Metab; 2019 Mar; 1():404-415. PubMed ID: 31058257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improvement of neuronal differentiation by carbon monoxide: Role of pentose phosphate pathway.
    Almeida AS; Soares NL; Sequeira CO; Pereira SA; Sonnewald U; Vieira HLA
    Redox Biol; 2018 Jul; 17():338-347. PubMed ID: 29793167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bcl-x
    Pfeiffer A; Schneider J; Bueno D; Dolga A; Voss TD; Lewerenz J; Wüllner V; Methner A
    Free Radic Biol Med; 2017 Nov; 112():350-359. PubMed ID: 28807815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway.
    Ghergurovich JM; García-Cañaveras JC; Wang J; Schmidt E; Zhang Z; TeSlaa T; Patel H; Chen L; Britt EC; Piqueras-Nebot M; Gomez-Cabrera MC; Lahoz A; Fan J; Beier UH; Kim H; Rabinowitz JD
    Nat Chem Biol; 2020 Jul; 16(7):731-739. PubMed ID: 32393898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutation in the glucose-6-phosphate dehydrogenase gene leads to inactivation of Ku DNA end binding during oxidative stress.
    Ayene IS; Stamato TD; Mauldin SK; Biaglow JE; Tuttle SW; Jenkins SF; Koch CJ
    J Biol Chem; 2002 Mar; 277(12):9929-35. PubMed ID: 11788599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nicotinamide, a glucose-6-phosphate dehydrogenase non-competitive mixed inhibitor, modifies redox balance and lipid accumulation in 3T3-L1 cells.
    Torres-Ramírez N; Baiza-Gutman LA; García-Macedo R; Ortega-Camarillo C; Contreras-Ramos A; Medina-Navarro R; Cruz M; Ibáñez-Hernández MÁ; Díaz-Flores M
    Life Sci; 2013 Dec; 93(25-26):975-85. PubMed ID: 24184296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glucose-6-phosphate dehydrogenase-deficient mice have increased renal oxidative stress and increased albuminuria.
    Xu Y; Zhang Z; Hu J; Stillman IE; Leopold JA; Handy DE; Loscalzo J; Stanton RC
    FASEB J; 2010 Feb; 24(2):609-16. PubMed ID: 19805580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glucose-6-phosphate dehydrogenase: a novel therapeutic target in cardiovascular diseases.
    Gupte SA
    Curr Opin Investig Drugs; 2008 Sep; 9(9):993-1000. PubMed ID: 18729006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.