These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 12466096)

  • 1. Plastid and stromule morphogenesis in tomato.
    Pyke KA; Howells CA
    Ann Bot; 2002 Nov; 90(5):559-66. PubMed ID: 12466096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell.
    Waters MT; Fray RG; Pyke KA
    Plant J; 2004 Aug; 39(4):655-67. PubMed ID: 15272881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The suffulta mutation in tomato reveals a novel method of plastid replication during fruit ripening.
    Forth D; Pyke KA
    J Exp Bot; 2006; 57(9):1971-9. PubMed ID: 16595580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato.
    Ling Q; Sadali NM; Soufi Z; Zhou Y; Huang B; Zeng Y; Rodriguez-Concepcion M; Jarvis RP
    Nat Plants; 2021 May; 7(5):655-666. PubMed ID: 34007040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of a tomato COBRA-like gene functioning in fruit development and ripening.
    Cao Y; Tang X; Giovannoni J; Xiao F; Liu Y
    BMC Plant Biol; 2012 Nov; 12():211. PubMed ID: 23140186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.).
    Schweiggert RM; Steingass CB; Heller A; Esquivel P; Carle R
    Planta; 2011 Nov; 234(5):1031-44. PubMed ID: 21706336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plastid Transformation in Tomato: A Vegetable Crop and Model Species.
    Ruf S; Bock R
    Methods Mol Biol; 2021; 2317():217-228. PubMed ID: 34028771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TGD5 is required for normal morphogenesis of non-mesophyll plastids, but not mesophyll chloroplasts, in Arabidopsis.
    Itoh RD; Nakajima KP; Sasaki S; Ishikawa H; Kazama Y; Abe T; Fujiwara MT
    Plant J; 2021 Jul; 107(1):237-255. PubMed ID: 33884686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stromules: a characteristic cell-specific feature of plastid morphology.
    Natesan SK; Sullivan JA; Gray JC
    J Exp Bot; 2005 Mar; 56(413):787-97. PubMed ID: 15699062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plastid tubules of higher plants are tissue-specific and developmentally regulated.
    Köhler RH; Hanson MR
    J Cell Sci; 2000 Jan; 113 ( Pt 1)():81-9. PubMed ID: 10591627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructure of the Epidermal Cell Wall and Cuticle of Tomato Fruit (Solanum lycopersicum L.) during Development.
    Segado P; Domínguez E; Heredia A
    Plant Physiol; 2016 Feb; 170(2):935-46. PubMed ID: 26668335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.
    D'Andrea L; Amenós M; Rodríguez-Concepción M
    Methods Mol Biol; 2014; 1153():227-32. PubMed ID: 24777801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of stromule formation by extracellular sucrose and glucose in epidermal leaf tissue of Arabidopsis thaliana.
    Schattat MH; Klösgen RB
    BMC Plant Biol; 2011 Aug; 11():115. PubMed ID: 21846357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The early light-inducible protein (ELIP) gene is expressed during the chloroplast-to-chromoplast transition in ripening tomato fruit.
    Bruno AK; Wetzel CM
    J Exp Bot; 2004 Dec; 55(408):2541-8. PubMed ID: 15475376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GFP-labelled Rubisco and aspartate aminotransferase are present in plastid stromules and traffic between plastids.
    Kwok EY; Hanson MR
    J Exp Bot; 2004 Mar; 55(397):595-604. PubMed ID: 14754918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increases in cell elongation, plastid compartment size and phytoene synthase activity underlie the phenotype of the high pigment-1 mutant of tomato.
    Cookson PJ; Kiano JW; Shipton CA; Fraser PD; Romer S; Schuch W; Bramley PM; Pyke KA
    Planta; 2003 Oct; 217(6):896-903. PubMed ID: 12844264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue.
    Egea I; Bian W; Barsan C; Jauneau A; Pech JC; Latché A; Li Z; Chervin C
    Ann Bot; 2011 Aug; 108(2):291-7. PubMed ID: 21788376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo analysis of interactions between GFP-labeled microfilaments and plastid stromules.
    Kwok EY; Hanson MR
    BMC Plant Biol; 2004 Feb; 4():2. PubMed ID: 15018639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism.
    Fraser PD; Enfissi EM; Halket JM; Truesdale MR; Yu D; Gerrish C; Bramley PM
    Plant Cell; 2007 Oct; 19(10):3194-211. PubMed ID: 17933904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractionation of Tomato Fruit Chromoplasts.
    De Pourcq K; Boronat A
    Methods Mol Biol; 2020; 2083():189-197. PubMed ID: 31745922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.