These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12466108)

  • 1. Cellulose orientation in the outer epidermal wall of angiosperm roots: implications for biosystematics.
    Kerstens S; Verbelen JP
    Ann Bot; 2002 Nov; 90(5):669-76. PubMed ID: 12466108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose orientation at the surface of the Arabidopsis seedling. Implications for the biomechanics in plant development.
    Kerstens S; Verbelen JP
    J Struct Biol; 2003 Dec; 144(3):262-70. PubMed ID: 14643195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization confocal microscopy and congo red fluorescence: a simple and rapid method to determine the mean cellulose fibril orientation in plants.
    Verbelen JP; Kerstens S
    J Microsc; 2000 May; 198(Pt 2):101-7. PubMed ID: 10810005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells.
    Liesche J; Ziomkiewicz I; Schulz A
    BMC Plant Biol; 2013 Dec; 13():226. PubMed ID: 24373117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical aspects of angiosperm root evolution.
    Seago JL; Fernando DD
    Ann Bot; 2013 Jul; 112(2):223-38. PubMed ID: 23299993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wall architecture in the cellulose-deficient rsw1 mutant of Arabidopsis thaliana: microfibrils but not microtubules lose their transverse alignment before microfibrils become unrecognizable in the mitotic and elongation zones of roots.
    Sugimoto K; Williamson RE; Wasteneys GO
    Protoplasma; 2001; 215(1-4):172-83. PubMed ID: 11732056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential regulation of cellulose orientation at the inner and outer face of epidermal cells in the Arabidopsis hypocotyl.
    Crowell EF; Timpano H; Desprez T; Franssen-Verheijen T; Emons AM; Höfte H; Vernhettes S
    Plant Cell; 2011 Jul; 23(7):2592-605. PubMed ID: 21742992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Onion epidermis as a new model to study the control of growth anisotropy in higher plants.
    Suslov D; Verbelen JP; Vissenberg K
    J Exp Bot; 2009; 60(14):4175-87. PubMed ID: 19684107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberrant cell expansion in the elongation mutants of barley.
    Lewis D; Bacic A; Chandler PM; Newbigin EJ
    Plant Cell Physiol; 2009 Mar; 50(3):554-71. PubMed ID: 19181700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New techniques enable comparative analysis of microtubule orientation, wall texture, and growth rate in intact roots of Arabidopsis.
    Sugimoto K; Williamson RE; Wasteneys GO
    Plant Physiol; 2000 Dec; 124(4):1493-506. PubMed ID: 11115865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The exodermis: a variable apoplastic barrier.
    Hose E; Clarkson DT; Steudle E; Schreiber L; Hartung W
    J Exp Bot; 2001 Dec; 52(365):2245-64. PubMed ID: 11709575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical microtubule patterning in roots of Arabidopsis thaliana primary cell wall mutants reveals the bidirectional interplay with cell expansion.
    Panteris E; Adamakis ID; Daras G; Rigas S
    Plant Signal Behav; 2015; 10(6):e1028701. PubMed ID: 26042727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein.
    Burk DH; Ye ZH
    Plant Cell; 2002 Sep; 14(9):2145-60. PubMed ID: 12215512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose orientation determines mechanical anisotropy in onion epidermis cell walls.
    Suslov D; Verbelen JP
    J Exp Bot; 2006; 57(10):2183-92. PubMed ID: 16720609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Structural Change of Plant Epidermal Cell Walls under Strain.
    Yu J; Del Mundo JT; Freychet G; Zhernenkov M; Schaible E; Gomez EW; Gomez ED; Cosgrove DJ
    Small; 2024 Jul; 20(30):e2311832. PubMed ID: 38386283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swelling of root cell walls as an indicator of their functional state.
    Meychik NR; Yermakov IP
    Biochemistry (Mosc); 2001 Feb; 66(2):178-87. PubMed ID: 11255126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Raman-scattering study on the net orientation of biomacromolecules in the outer epidermal walls of mature wheat stems (Triticum aestivum).
    Cao Y; Shen D; Lu Y; Huang Y
    Ann Bot; 2006 Jun; 97(6):1091-4. PubMed ID: 16533832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The growing outer epidermal wall: design and physiological role of a composite structure.
    Kutschera U
    Ann Bot; 2008 Apr; 101(5):615-21. PubMed ID: 18258808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing the Architecture of the Cell Wall in Living Plant Cells by Bioimaging and Enzymatic Degradation.
    Yilmaz N; Kodama Y; Numata K
    Biomacromolecules; 2020 Jan; 21(1):95-103. PubMed ID: 31496226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coiled body numbers in the Arabidopsis root epidermis are regulated by cell type, developmental stage and cell cycle parameters.
    Boudonck K; Dolan L; Shaw PJ
    J Cell Sci; 1998 Dec; 111 ( Pt 24)():3687-94. PubMed ID: 9819359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.