BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12466277)

  • 1. Salt dependence of DNA binding by Thermus aquaticus and Escherichia coli DNA polymerases.
    Datta K; LiCata VJ
    J Biol Chem; 2003 Feb; 278(8):5694-701. PubMed ID: 12466277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of the DNA structural selectivity of the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus.
    Wowor AJ; Datta K; Brown HS; Thompson GS; Ray S; Grove A; LiCata VJ
    Biophys J; 2010 Jun; 98(12):3015-24. PubMed ID: 20550914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative thermal denaturation of Thermus aquaticus and Escherichia coli type 1 DNA polymerases.
    Karantzeni I; Ruiz C; Liu CC; Licata VJ
    Biochem J; 2003 Sep; 374(Pt 3):785-92. PubMed ID: 12786603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The glutamate effect on DNA binding by pol I DNA polymerases: osmotic stress and the effective reversal of salt linkage.
    Deredge DJ; Baker JT; Datta K; Licata VJ
    J Mol Biol; 2010 Aug; 401(2):223-38. PubMed ID: 20558176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extreme free energy of stabilization of Taq DNA polymerase.
    Schoeffler AJ; Joubert AM; Peng F; Khan F; Liu CC; LiCata VJ
    Proteins; 2004 Mar; 54(4):616-21. PubMed ID: 14997557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of replication versus repair DNA substrates with the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus.
    Yang Y; LiCata VJ
    Biophys Chem; 2011 Nov; 159(1):188-93. PubMed ID: 21742429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enthalpic switch-points and temperature dependencies of DNA binding and nucleotide incorporation by Pol I DNA polymerases.
    Brown HS; Licata VJ
    Biochim Biophys Acta; 2013 Oct; 1834(10):2133-8. PubMed ID: 23851145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global conformations, hydrodynamics, and X-ray scattering properties of Taq and Escherichia coli DNA polymerases in solution.
    Joubert AM; Byrd AS; LiCata VJ
    J Biol Chem; 2003 Jul; 278(28):25341-7. PubMed ID: 12730189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-A resolution: structural basis for thermostability.
    Korolev S; Nayal M; Barnes WM; Di Cera E; Waksman G
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9264-8. PubMed ID: 7568114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational study of putative residues involved in DNA synthesis fidelity checking in Thermus aquaticus DNA polymerase I.
    Elias AA; Cisneros GA
    Adv Protein Chem Struct Biol; 2014; 96():39-75. PubMed ID: 25443954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain exchange: chimeras of Thermus aquaticus DNA polymerase, Escherichia coli DNA polymerase I and Thermotoga neapolitana DNA polymerase.
    Villbrandt B; Sobek H; Frey B; Schomburg D
    Protein Eng; 2000 Sep; 13(9):645-54. PubMed ID: 11054459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of Thermus aquaticus DNA polymerase.
    Kim Y; Eom SH; Wang J; Lee DS; Suh SW; Steitz TA
    Nature; 1995 Aug; 376(6541):612-6. PubMed ID: 7637814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of the binding of Thermus aquaticus DNA polymerase to primed-template DNA.
    Datta K; LiCata VJ
    Nucleic Acids Res; 2003 Oct; 31(19):5590-7. PubMed ID: 14500822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations on the thermostability and function of truncated Thermus aquaticus DNA polymerase fragments.
    Villbrandt B; Sagner G; Schomburg D
    Protein Eng; 1997 Nov; 10(11):1281-8. PubMed ID: 9514116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presence of 18-A long hydrogen bond track in the active site of Escherichia coli DNA polymerase I (Klenow fragment). Its requirement in the stabilization of enzyme-template-primer complex.
    Singh K; Modak MJ
    J Biol Chem; 2003 Mar; 278(13):11289-302. PubMed ID: 12522214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational dynamics of Thermus aquaticus DNA polymerase I during catalysis.
    Xu C; Maxwell BA; Suo Z
    J Mol Biol; 2014 Aug; 426(16):2901-2917. PubMed ID: 24931550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5' to 3' exonuclease activity.
    Lawyer FC; Stoffel S; Saiki RK; Chang SY; Landre PA; Abramson RD; Gelfand DH
    PCR Methods Appl; 1993 May; 2(4):275-87. PubMed ID: 8324500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides.
    Tabor S; Richardson CC
    Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6339-43. PubMed ID: 7603992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of DNA polymerase I from an extreme thermophile, Thermus scotoductus strain K1.
    Saghatelyan A; Panosyan H; Trchounian A; Birkeland NK
    Microbiologyopen; 2021 Jan; 10(1):e1149. PubMed ID: 33415847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of the 3'-5' exonuclease activity of Taq DNA polymerase by protein engineering in the active site.
    Park Y; Choi H; Lee DS; Kim Y
    Mol Cells; 1997 Jun; 7(3):419-24. PubMed ID: 9264032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.